
Tips

a)
There are only four inputs to the system you are designing, so creating a truth table is
entirely feasible.

Thinking ahead though, do you really need a truth table for TS3 and TS0? In what situations
(i.e., for what combinations of inputs) would TS3 be active? In what situations would TS0 be
inactive? Don’t just immediately try to brute-force logic problems; there are very often
simplifications that you can find by thinking about the entire system.

A similar line of thought might be productive for TS1 and TS2, but if you don’t see any, falling
back on tools like K-maps is also a reasonable approach to the design.

b)
One possible approach to this design would be to break it into smaller, more manageable
pieces that more closely align with behavior you can get from the listed building blocks. A
reasonable division could be 1) how could the “tally” numbers be converted to a form more
conducive to summing, and then 2) assuming that the result of that summing is in an
unsigned binary representation, how could it be converted back to a right-justified “tally”
representation?

For the first part: in the “tally” number system, what does every single bit numerically
represent? Given that, how could you sum them if you have unsigned binary adders?

For the second part: what does the counting sequence (0, 1, 2, 3, etc.) look like in six bits of
right-justified tally counting? Does that look similar to the behavior of any of the common
building blocks? If it doesn’t exactly match, can some simple logic be added to achieve
what you need? (don’t forget that simple logic gates are available)

