
a)

As long as any input is active, TS0 will be active.

𝑇𝑇𝑇𝑇0 = 𝑇𝑇𝐴𝐴1 + 𝑇𝑇𝐴𝐴0 + 𝑇𝑇𝑇𝑇1 + 𝑇𝑇𝑇𝑇0

As long as at least two inputs are active, TS1 will be active. Alternatively, if three or more
inputs are inactive, TS1 will be inactive (presented here in two equivalent forms).

𝑇𝑇𝑇𝑇1 = �𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇1� + �𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇0� + �𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝑇𝑇1 ∙ 𝑇𝑇𝑇𝑇0� + (𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇1 ∙ 𝑇𝑇𝑇𝑇0)

𝑇𝑇𝑇𝑇1 = (𝑇𝑇𝐴𝐴1 + 𝑇𝑇𝐴𝐴0 + 𝑇𝑇𝑇𝑇1) ∙ (𝑇𝑇𝐴𝐴1 + 𝑇𝑇𝐴𝐴0 + 𝑇𝑇𝑇𝑇0) ∙ (𝑇𝑇𝐴𝐴1 + 𝑇𝑇𝑇𝑇1 + 𝑇𝑇𝑇𝑇0) ∙ (𝑇𝑇𝐴𝐴0 + 𝑇𝑇𝑇𝑇1 + 𝑇𝑇𝑇𝑇0)

At least three inputs must be active for TS2 to be active:

𝑇𝑇𝑇𝑇2 = 𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇1 + 𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇0 + 𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝑇𝑇1 ∙ 𝑇𝑇𝑇𝑇0 + 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇1 ∙ 𝑇𝑇𝑇𝑇0

All inputs must be active for TS3 to be active:

𝑇𝑇𝑇𝑇3 = 𝑇𝑇𝐴𝐴1 ∙ 𝑇𝑇𝐴𝐴0 ∙ 𝑇𝑇𝑇𝑇1 ∙ 𝑇𝑇𝑇𝑇0

b)

Each bit in the tally number system represents numerical “1” so each bit can be added as
the least-significant bit of six separate unsigned numbers, using normal binary adders. An
efficient way to do that with six inputs would be to make use of the carry in on two 2-bit
adders, since the carry in also gets added to the least-significant place, and then add those
results with another 2-bit adder and including the carry out as part of the numerical result.
Since the maximum expected result will be 6, these adders will always be enough.

2

A

B

Cin

S

Cout This can now be used
as a 3-bit unsigned
binary number

0

Thinking about converting an unsigned number to a right-justified “tally” system,

Number TS5 TS4 TS3 TS2 TS1 TS0
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 0 0 1 1 1 1
5 0 1 1 1 1 1
6 1 1 1 1 1 1

it looks most similar to a line decoder (highlighted in red), but it will need some massaging,
such as:

The 3-bit number
from the previous
hardware

1

