These questions are not about numerical base conversion, so try to solve them without translating to binary (or at least doing minimal conversion).

- a) What is the least-significant digit in the binary representation of 746589236401265623059801274506457385680917553487047₁₀
- b) What are the three least-significant digits in the binary representation of the result of $398765879354534_{10} \times 8_{10}$
- d) How many digits would be needed to represent 6354_{10} in base-2?
- e) What is the most-positive number that can be represented with six bits if those bits are used to represent numbers using unsigned binary? Express the answer in binary and then in decimal.
- f) What is the most-positive number that can be represented with six bits if those bits are used to represent numbers using two's complement binary? Express the answer in binary and then in decimal.
- g) What is the most-positive number that can be represented with six bits if those bits are used to represent numbers using a "tally" system, where each bit represents whether or not a single "thing" exists? Express the answer in binary and then in decimal.

Here is a common human system for counting using a tally system, for reference:

1		6	11111
2		7	J##11
3	Ш	8	J## III
4	Ш	9	J##1111
5	Ж	10	ШШ