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Designing Computer Systems

Simplification
Using  DeMorgan's  theorem,  any  binary  expression  can  be  transformed  into  a 
multitude of equivalent forms that represent the same behavior. So why should we 
pick  one  over  another?  One form provides  a  canonical  representation.  Another 
provides a clear representation of the desired function.  As engineers,  we want 
more than functionality. We crave performance and efficiency!

So what improves an expression? … fewer logical functions. Every logical function 
requires  computational  resources  that  add  delay  and/or  cost  energy,  switches, 
design time, and dollars. If we can capture the desired behavior with fewer logical 
operations, we are building the Ferrari of computation; or maybe the Prius?

Simplify Your Life:  There are many techniques to simplify Boolean expressions. 
Expression reductions (e.g., X + X · Y  X + Y) is good. But it's not obvious what to→  
reduce first, and it's hard to know when you're finished. An intuitive method can 
be  seen in a truth table … sometimes. Here's an example. Consider the expression:

Out = A·B·C + A·B·C + A·B·C
In truth table form, one might notice that the red and green terms suggest that 
when B is false (zero) and C is true (one), Out is true (one) no matter what state A 
is in. The blue and green terms express a similar simplification. If A is true and B 
is false, Out is true independent of C. A simplified expression Out =  B·C +  A·B 
expresses  the  same  behavior  with  three  dyadic  (two  input)  logical  operations 
versus eight for the original expression.

A B C Out

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 0

1 1 1 0
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This simplification is intuitive. In all cases when a subexpression (e.g., B·C) is true, 
the  output  is  true,  then  including  extra  qualifying  terms  is  unnecessary. 
Unfortunately, truth tables lack uniform adjacency of these simplifying groupings.

For  a  small  number  of  variables,  a  Karnaugh  Map  (K-map)  displays  the  same 
behavior  information  in  a  different  way.  A  K-map  are  composed  of  a  two-
dimensional map displaying the output for every combination of input values. But 
these combinations are arranged so that horizontal or vertical movement results in 
exactly one variable changing. Here's the K-map for the function being considered.

In this  map,  the top row includes all  input  combinations where A is  false.  The 
second row includes all combinations where A is true. The left two columns include 
input combinations where B is false. The right two columns cover when B is true. 
The outermost columns include input combinations where C is false. The middle two 
columns include cases where C is true.

In  this  arrangement,  adjacent  ones  (true  outputs)  suggests  an  opportunity  for 
simplification. The red and green ones can be grouped into a single term covering 
all combinations where  B is zero and C is one (B·C). The adjacent  blue and  green 
ones are grouped to cover where  A is one and B is zero (A·B). Since a simplified 
expression  must  cover  all  cases  when  the  output  is  one,  these  terms  can  be 
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combined to express the function's behavior: Out = B·C +  A·B, a simplified sum of 
products expression.

Two-dimensional K-maps accommodate two-, three-, and four-variable expressions. 
Larger K-maps (five- and six-variable) are possible in three dimensions. But they 
are error prone and better simplification techniques exist.

Just like a truth table, the K-map describes a function's behavior by giving the 
output for every combination of the inputs. But adjacency in a K-map also indicates 
opportunities for expression simplification. Here's a four-variable K-map.

The behavior represented by this K-map could be represented as a truth table. 
Adjacent ones are opportunities for simplification. The size of groupings are given 
as (width x height). So a (2x1) grouping is two squares wide and one square high.
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The second row grouping (2x1) represents all cases where A is false, B is false, and 
C is true (A·B·C). The bottom row (4x1) is all cases where A is true and C is false 
(A·C).  Larger  groupings  lead  to  smaller  terms.  But  the  grouping  has  to  be 
describable as all cases where variables have a certain value.

The first column contains three adjacent ones. In this candidate grouping, B and D 
are zero. But it is not all cases where B and D are zero. A (1x3) grouping is not a 
describable grouping. Instead these adjacent ones are cover by two overlapping 
(1x2) groupings: C·D and A·D. Overlapping groups are okay, so long as one grouping 
is not subsumed by another grouping. Groupings of ones always have power of two 
dimensions (1, 2, 4).
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Adjacency extends at the K-map edges. The one in the third column of the top row 
can  be  grouped  with  the  corresponding  one  in  the  bottom  row.  This  grouping 
represents all cases where B is true, C is false, and D is true (B·C·D). Here are all 
legal groupings in this K-map.

Note that while groupings overlap, no grouping falls completely within another. The 
grouped terms: A·B·C, A·C, C·D, A·D, and B·C·D, represent all candidate terms in the 
simplified expression. But are all terms necessary?

The objective is to correctly define the behavior by expressing all cases when the 
output is one. This means selecting groupings that cover all true outputs in the K-
map. Sometimes this requires all groupings. Sometimes not. In this K-map, three 
groupings, A·B·C, A·C, and B·C·D, include a true not covered by any other grouping. 
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This makes them essential for the simplified expression. If they are not included, 
the  behavior  is  not  accurately  defined.  But  in  the  example,  these  essential 
groupings don't cover all the ones in the K-map. Additional groupings are needed.

Two groupings C·D and A·D, are not essential (non-essential) but cover the missing 
one in the behavior (A·B·C·D). Since they have the same number of variables, and 
the  same  cost  to  implement,  either  will  provide  an  equivalently  simplified 
expression.

Out =  A·B·C + A·C + C·D +  B·C·D Out =  A·B·C + A·C + A·D +  B·C·D
These two simplified expressions are significantly less expensive to implement than 
the canonical sum of products expression.

Out =  A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D + A·B·C·D

Parlance of the Trade: Due to its arithmetical origin, these groupings are named 
Prime Implicants. PIs for short. Essential prime implicants are always included in 
the  simplified  expression  because  they  exclusively  contain  one  of  the  grouped 
elements.  Non-essential  PIs  may  or  may  not  be  needed,  depending  on  whether 
essential PIs cover the selected outputs. Formally,  this simplification process is 
defined as minimally spanning the selected outputs.

But  aren't  the  selected  outputs  always  true?  Not  always.  More  on  this  later. 
Here's another example.
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Two (2x2) PIs stand out: all cases where A is false and B is true (A·B), and all cases 
where A is true and B is false (A·B). But how to group the remaining true outputs?
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The final (2x2) PI groups the four corners, covering all cases where C and D are 
zero (C·D). The edges of a K-map connected; there's just no good way to draw it on 
a  two-dimensional  plane.  If  the  vertical  edges  are  joined,  the  map  becomes  a 
cylinder. If the ends of the cylinder are joined, it becomes a donut (torus). In two-
dimensions, one must look for connections on the edges of K-maps.

Since all PIs are essential and necessary to span true outputs in the behavior, the 
simplified sum or products expression is Out = A·B + A·B +  C·D

Here's another example.
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This example contains six overlapping PIs:  A·B·C,  B·C·D,  A·C·D,  A·B·C,  B·C·D, and 
A·C·D. What makes them interesting is that none are essential. Sometimes there is 
an  urge  to  ignore  non-essential  PIs  when  simplifying  a  K-map.  This  example 
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demonstrates the need to record all legal PIs before considering minimal spanning. 
There are two, equally simplified sum of products expressions for this behavior.

Out =  A·B·C + A·C·D + B·C·D Out =  B·C·D + A·B·C + A·C·D
Incomplete listing of PIs might not expose both of these expressions due to false 
appeasement of essentialness. It might even yield a less simplified result.

SoP versus PoS: Boolean Algebra explains the duality where a function's behavior 
can be defined by stating where the output is true (sum of products) or by stating 
where the function is not false (product of sums). This applies in K-maps. In the 
first case (SoP), product terms define a group of true outputs (a PI). A spanning 
set of these groupings is ORed together to form the simplified expression. In the 
second case (PoS), groupings represent where the output is not true, but false. 
Since the simplified expression must still represent where the behavior is true, a 
grouping (PI) must express  states not in the grouping. Here's the same example, 
targeting a simplified product of sums expression.

 

0 0 0 0

0 1 1 1

1 1 0 1

0 0 0 0
A

A

B B

C

C

C

DD D
The largest grouping of zeros (false) covers the cases where C is false. As in the 
SoP process, a (4x2) grouping is drawn. But labeling this group  C is not helpful, 
since the goal is expressing when the behavior is true. This grouping include many 
of the false outputs and none of the true outputs. So the PI should represent when 
it  is  not  in  this  grouping,  namely  C.  Being  outside the  red PI C is not enough; 
additional Pis are required to guarantee a true output.
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0 0 0 0
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Just as ones where grouped in SoP, here zeros are grouped. A (1x2) grouping of 
false outputs represents when A is true and B is true and D is true. But the PI for 
this grouping represents cases not in this grouping. That occurs when A is false OR 
B is false OR D is false (A+B+D). It is ORed because the output is not in this 
grouping if any of the variables are false. Again, this doesn't mean the output is 
true, its just not in this grouping of zeros.

Another (1x2) grouping of false outputs occurs when A is false and B is false and D 
is false. This PI is expressed as A is true or B is true or D is true (A+B+D). These 
are all cases not in the green grouping.

So how does the simplified expression show when the behavior is true? By showing 
when it it is not false! Each of the PIs represents cases that are not in one of the 
groups of zeros.  If the PIs span all  false outputs,  and all  terms are true, the 
output must be true. In this example, all PIs are essential (i.e., they contain a false 
output not included in any other PI). So the simplified product of sums expression 
is:

Out =  C · (A+B+D) · (A+B+D)

Note  that  this  simplified  PoS  expression  has  no  obvious  relationship  to  the 
equivalent simplified SoP expressions:

Out =  A·B·C + A·C·D + B·C·D = B·C·D + A·B·C + A·C·D

This PoS example has unusual symmetries in its PIs. Here's a different example.  
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The groupings of false outputs mirror the SoP technique for true outputs. Only 
here the PI is labeled for cases outside its group. The (4x1) in the top row contains 
cases where A and C are false. The PI is labeled  (A+C). The (1x4) in the third 
column includes cases where B and D are true. The PI is labeled (B+D). The upper 
right quadrant (2x2) is selected when A is false and B is true. The PI is (A+B). The 
(1x2) in the first column is cases where B, C and D are all false. The PI is (B+C+D).

0 0 0 0

1 1 0 0

1 1 0 1

0 1 0 1
A

A

B B

C

C

C

DD D
All PIs are essential. So the simplified PoS expression is:

Out = (A+C) · B+D · (B+C+D)

Here's another example.
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The PIs include the following: (B+C), (A+B+D), (A+C+D), (B+C+D), (A+B+D), (A+C+D). 

0 1 1 0
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0 0 1 0
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Only (B+C) is essential. No other PI exclusively contains a false output. But this 
simplified expression is not ambiguous. The minimal span of zeros yields:

Out = (B+C) · (A+C+D) · (A+B+D)

Six of One; A Half Dozen of Another: Some folks find it advantageous to place 
the input variables in the upper left corner of a K-map and assign truth table row 
numbers  to  each  square.  While  truth  table/K-map  correspondences  are  never 
row/column sequential, the numbering can have some semi-sequential ordering. In 
our examples, it looks like this:
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0 8 10 2

4 12 14 6

5 13 15 7

1 9 11 3
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AC
BD

So what difference does it make? In terms of simplification, none. Reordering the 
input variables scrambles the K-map cells. But any proper ordering, where vertical 
and horizontal movements change exactly one variable, yields the same PIs and the 
same simplified expression.

Simplifying Boolean Expression: This ordering helps simplify Boolean expressions. 
Suppose a behavior, defined as a Boolean expression, is to be simplified.

Out = A·B·D + A·B·C·D + B·C·D + A·B·C + A·B·D

In this SoP expression, each product term represents a grouping of true outputs. 
The ungrouped cases represent false outputs. Here's the mapping of each term.

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-13 © Scott & Linda Wills



Once the expression's behavior is defined, it can be simplified as either a SoP or 
PoS expression. In SoP simplification, there are four PIs (B·D, A·C, C·D, B·C), three 
of which are essential and span the true outputs.

Out = B·D + A·C + C·D

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A

A

B B

C

C

C

DD D
In PoS, false outputs are grouped. Here three PIs are identified. All are essential.

Out = (C+D) · (B+C) · (A+B+D)

0 1 0 0

1 1 1 1

1 1 0 1

0 1 0 0
A
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B B
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DD D
Both  simplified  expressions  require  fewer  dyadic  logical  operations  than  the 
original expression (five  for SoP, six for PoS versus 15  for original).
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Here's a PoS expression to be simplified. Each term represents potentially true 
outputs outside a grouping of known false values. So zeros can be added for each 
term. Finally, the ungrouped cases are assigned a true value (one).

Out = (A+B+C) · (A+B+D) · (B+C+D) · (A+B+D) · (A+C+D) · (A+B+C+D)

0 0 1 0

1 0 0 0
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The PoS simplification produces six PIs:  (C+D), (B+C), (A+B+C),  (A+B+D), (A+C+D), 
(B+D), two of which are essential: (C+D), (B+C). One non-essential is require to span 
false outputs: (A+B+D).

Out = (C+D) · (B+C) · (A+B+D)

0 0 1 0

1 0 0 0

1 1 0 0

0 1 1 0
A

A

B B

C

C

C

DD D

08:43:29 PM 4 June 2013 SP-15 © Scott & Linda Wills



This behavior also can be simplified to a SoP expression.  It produces five PIs: 
B·C·D, A·B·C, A·B·D, A·C·D, B·C·D, two are essential: B·C·D, B·C·D. One non-essential 
PI is required to cover true outputs: A·B·D.

Out =  B·C·D + B·C·D + A·B·D
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Again,  simplification  reduced  implementation  cost  from  18  logical  operations 
(original) to six (PoS) and eight (SoP). It's clear from these examples that there is 
no direct translation of a product term to a sum term, or vice versa.

Simplification Nightmare:  Is there an  unsimplifiable behavior? Yes.  Here's odd 
parity (XOR).
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Odd and even parity (XOR and XNOR) toggle their outputs with every horizontal or 
vertical movement. Exactly one variable is changing. So the number of ones also 
toggles between odd and even. For this reason, there are no adjacent true or false 
outputs.  SoP  terms  are  always  minterms and  PoS  terms  are  always  maxterms. 
Parity is a useful function. But it is relatively costly.

What If You Don't Care?: Sometimes a function's behavior is unimportant for 
certain combinations of the inputs. Maybe it cannot occur. Or when a combination 
of the inputs occurs, the output is not used. This is recorded in the truth table as 
an “X” for the output. When an “X” occurs in a K-map, it can be defined as either a  
zero or one to improve the simplification process. Here's an example.

1 1 0 0

1 X 0 0

1 0 0 X

1 0 0 0
A

A

B B

C

C

C

DD D

For two combinations of inputs: A·B·C·D and A·B·C·D, the output is unspecified and 
listed as don't care “X”. This underspecification of the behavior permits the don't 
cares to be specified to reduce implementation cost.
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To simplify this behavior to a SoP expression, the don't cares must be specified. 
For the first case, the choice of a true output doesn't add additional PIs. Rather it 
increases a PI from a (2x1) A·B·C to a (2x2) A·B. This eliminates a logical operation 
from the simplified  expression. In the second case, a false output is selected to 
eliminate  the  need  for  an  additional  PI:  A·C·D,  to  cover  it.  The  simplified 
expression is found:

Out =  A·B + B·D

Sometimes specifying don't cares can take some thought. Here's another example.

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
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Suppose  a  simplified  PoS  expression  is  required.  Don't  cares  are  specified  to 
maximize the size of false output PIs while minimizing the number of PIs.
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Here, the don't cares a specifies false to create two (2x2) PIs: (B+C), (A+D). The 
remaining don't cares are specified as true and don't contribute to groupings. The 
simplified expressing is:

Out = (B+C) · (A+D)

X 0 1 X

1 1 X 1

1 0 X X

0 0 0 1
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B B

C

C

C
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1
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More than Four Variables?: How does handle more complex behaviors with over 
four  variables.  Other  simplification  techniques,  like  the  Quine–McCluskey 
algorithm, are not limited in the number of variables. They are less intuitive to 
humans. But they are more amenable to computers and can be programmed into 
design tools like Espresso.

Summary: This chapter addresses methods for Boolean expression simplification 
using Karnaugh maps.

• Term reduction is possible when all combinations of a subexpression have a 
true (or false) output.

• A Karnaugh map specifies a behavior where vertical and horizontal movement 
changes exactly one variable.

• For a simplified sum of products expressions, true outputs are grouped. For 
product of sums expression, false outputs are grouped.

• A prime implicant is a group of adjacent true or false outputs that are of 
power of two (1, 2, 4) dimensions, and not enclosed in a larger grouping.

• A product PI lists where the output is true. A sum PI lists where the output 
is not in a specified grouping of false outputs.

• Boolean expressions and behaviors with don't cares can be simplified.
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