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Latches and Registers

The potential to design functional blocks using switches and wire appears limitless. 
The  analog  quantities  of  our  world  can  be  represented  using  multi-bit  words. 
Operations on these values, defined a Boolean expressions, can be constructed as 
combinational logic of unbound complexity. So what is missing? … history.
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No matter how complex the implemented function is, it has no memory of previous 
values or results. All data to be processed must be presented to the combinational 
logic as inputs. Combinational logic has no state.

Building even the simplest digital system is impossible without state. Consider a 
basic four function calculator (a four banger). Although it can process big numbers 
rapidly,  how can it solve a simple expression “5 + 3 =” without state? It would 
require the input keys “5”,  “+”,  “3”,  and “=” to be held simultaneously while the 
answer is displayed. Multi-digit math is out of the question.

One Bit Store: For useful digital computing systems, a simple block is needed that 
can store a bit of data for an extended period of time. That way data available now 
will persist, and can be used later. To best exploit the technology, this bit store 
must be built with switches and wire. And since many bits are needed, it must be 
implemented simply. Here's a starting point:

It certainly is simple, only two inverters (four switches). But why would somethings 
this simple have the ability to store data? The wire looping from the output to the 
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input is unusual: its uses its own output as an input. Analyzing this simple block is a 
challenge since, although it has only two nodes, it has no input values. So what are 
the nodes values?

Surprisingly, there are two answers. The output could be low (0) with the short 
wire between the inverters high (1). Or the output could be high with the short 
wire low. Which is right? They both are! This circuit is stable in two states; its bi-
stable. Since a one bit store maintains one of two states, this simple block is ideal  
… except it has no input.

RS Latch: In order to use this bit store, it needs inputs that can set the output 
high, or reset the output low. But it still must retain the ability to hold a state, 
high  or  low,  for  an  indefinite  period.  Cross-coupled inverting  gates,  where  the 
output of each inverting gate is an input to the other, provides bi-stability. But 
inputs are need to Reset and Set it to a known state.

Consider a familiar gate, seen in a new way: a two input NOR. Assume one of the 
gate's input is a boolean variable In. The other is a control variable C.

C = 0 C = 1
The control signal C determines whether output is related to In. If C is low, the 
output is the complement of In (i.e., it is an inverter). If C is high, the output is low 
no matter what the value of In is.

IN C Out

A 0 A Out = In

X 1 0 Out = 0

This is just what is needed. The heart of a bit store is two cross-coupled inverters. 
To force the output into one of two states, the inverter can be preempted. Using 
cross-coupled NOR gates, the control inputs turn off one of the two inverters, 
creating a known output (low or high).

When both R (reset) and S (set) are low, both NOR gates act as inverters. Their 
other input is complemented to become the output. So when Reset and Set are low, 
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cross-coupled NOR gates become cross-coupled inverters used in the previous bit 
store implementation.

When either the Reset or Set inputs is temporary asserted (set high), it turns off 
an inverters, forcing the output into a known state. When Reset is high, Out is low 
independent of the first NOR gate's output. Since Out is low, the first NOR gate 
(acting as an inverter) makes the ignored input to the second NOR gate high. So 
when  Reset  returns  low,  and  the  second  NOR  gate  becomes  an  inverter,  Out 
remains low.

When Set is asserted (with Reset low), the output of the first NOR gate is low. 
With Reset low, the first NOR gate's output is inverted by the second NOR gate, 
setting Out high. Since this also sets the other input of the first NOR gate, the 
gates retain this state when Set is deasserted (set low).

Meta-Stability: Reset and Set can be asserted individually to force the RS latch 
into one of its two stable states. When both Reset and Set are low, this stable 
state  remains  unchanged.  But  what  happens  when  Reset  and  Set  are  asserted 
simultaneously? Both NOR gates have low outputs. While this is logically correct, it 
can  lead  to  an  unpredictable  state  when  Reset  and  Set  are  deasserted 
simultaneously. Which of the two stable states will it become? This condition is call  
meta-stable because the state of the latch is unknowable. It is also not knowable 
how long it will take for the latch to return to one of the two states.

“stable” “meta-stable”
To appreciate the difference between stable and meta-stable, consider a ball in a 
valley versus a  ball  balanced in a peak. Small  forces on the  stable ball will  not 
change its state. In contrast, a small  force applied to the  meta-stable ball will 
cause a significant state change. Needless to say, meta-stability should be avoided 
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when  predictable  storage  is  desired.  So  Reset  and  Set  are  only  asserted 
individually.

R S Out

0 0 Qo hold

1 0 0 reset

0 1 1 set

1 1 0 avoid

The hold state employs a new symbol: Qo to represent a previously defined state. 
It can be either 0 or 1, depending on whether Reset or Set was last asserted.

Transparent Latch: An RS latch can provide needed state. But it requires specific 
control signals to define and hold the storage. When a 0 is being stored, Reset is 
asserted and Set remains low. When a 1 is being stored, Set is asserted while R is  
low.  When the  value  is  held,  neither Reset  nor  Set are asserted.  This  can  be 
generated from an input In and an enable En that allows the input to be captured.

assert R assert S hold
Before connecting this circuity, the RS latch must be rearranged.

Combining  both  circuits  produces  a  transparent  latch.  This  transparent  latch, 
shown below, can be in one of four different cases. Two are completely defined by 
the inputs: storing 0 and storing 1. Two are defined by En and the internal state: 
holding 0 and holding 1. In the second two cases, IN is ignored; it doesn't matter 
whether its one or zero because its masked by the AND gates.
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storing 0 storing 1

holding 0 holding 1
Here's the functional behavior of a transparent latch.

IN En Out

X 0 Qo latch

A 1 A transparent
When  enable  is  asserted,  the  output  follows  the  input  so  the  latch  becomes 
transparent. When enable is not asserted, the latch maintains the stored state on 
the output, independent of the input. Its value was defined at the last moment of 
transparency.

Implementation Costs: When implemented with switches and wire, this transparent 
latch requires two NOR gates (2 x 4 switches), two AND gates (2 x 6 switches), 
and one inverter (2 switches)  for  a  total  of  22 switches.  Not bad.  But  digital  
systems require a lot of storage bits. Is there a cheaper implementation of this 
behavior using switches and wire?

Some tricks from mixed logic can help.  If the bubbles on the NOR gates slide 
arround to the inputs and an extra pair of bubbles is added between the AND and 
OR, this implementation is transforms from two NOR and two AND gates to four 
NAND gates. Here the Set and Reset signal become active low (they are asserted 
when low, unasserted when high). Generating these signals requires the inverter to 
move down. But this latch implementation realizes the transparent latch behavior 
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with four NAND gates (4 x 4 switch) and one inverter (2 switches) for a total of 
18 switches.

But can the count still  be lowered?  Let's go back to basics.  Two cross coupled 
inverters are capable of storing a bit, but lack an input. Suppose pass gates are 
used to selective configure these inverters into either a transparent mode (where 
the the input is connected and the feedback pass is removed),  or a hold mode 
(where the feedback path is connected and the input is removed). These pass gates 
serve as a two to one mux. It may be easier to understand when drawn as a mux.

transparent mode hold mode
This implementation employs three inverters (2 x 2 switches) and two pass gates 
( 2 x 2 switches) for a total of 10 switches. It is called a ten transistor latch and is 
the significant storage element in digital computation. Can we do better than ten 
transistors? Yes, but at a cost in speed, and only in dense arrays. More on this 
follows in the memory chapter.

Latch Limitations:  Latches can store a single bit  of data,  but with limitations. 
Consider a parallel to serial shift register. This is a device that can take parallel  
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word (in this case, four bits), and shift it down a serial wire in an orderly way. We 
use these devices to transfer data between our digital products. USB is short for 
“Universal  Serial  Bus”.  SATA means “Serial  Advanced Technology  Attachment”. 
Strange  as  it  may  seem,  serial  buses  often  transfer  data  faster  than  parallel 
buses. So the need to load a parallel word into a clocked serial bus interface is 
widespread. Here's a first attempt.

Notice we are using latches to hold the word (I3:I0) when the Load signal is high. 
Then we use a simple clock to move bits along to Out.

What is a Clock: In physics, the most used clock signal is a sinusoidal waveform. But 
in the digital world, everything is a one or a zero. A clock is a square wave that 
alternates between high and low at a defined period. A timing diagram shows the 
behavior as the load signal goes low and the data move serially through the latches. 
Time advances from left to right. Each signal is stacked with high and low values  
indicated by the red and blue marks. Note clock alternates between zero and one. 

The problem occurs when the clock goes high (after Load goes low). All the enables 
on all of the latches go high and all latches become transparent. The stored data 
does travel to the output, but not in an orderly fashion. Instead bit race through 
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the latches independent of the clock. Not good. There is no way to capture and 
reconstruct the parallel word on the other end of the serial bus.

Two Phase, Non-Overlapping Clock: The problem with a latch is that is has no 
storage when its transparent. It can't hold an old value and accept a new value at 
the same time. To do accomplish this, there needs to be two latches and a special 
clocking scheme that allows one latch to hold the current value while a new value is 
being  captured.  The  clocking  scheme  must  allow  each  latch  to  be  transparent 
independently, with a brief period in between where both latches are holding their 
value. Here's the clock that produces this behavior:

Both clocks have the same shape, including a small asymmetry of being low longer 
than being high. But the second clock is phase shifted by 180 degrees. Note also 
that the two clock are never high at the same time. This creates a two phase, non-
overlapping clock. The clock signals are often named phi1 (Φ1) and phi2 (Φ2). It is 
widely used in digital  computation where phase periods are set large enough to 
accommodate  the  gate  depth  x  gate  delay,  and  non-overlap  periods  are  large 
enough to accommodate anticipated clock skew.  This scheme will  help create a 
workable shift register.

After data is loaded, it is advanced in the shift register in time with the clock 
frequency.  This  orderly  movement  is  defined  as  the  latch  alternate  between 
transparent and hold modes. During  Φ1, the first latch is transparent while new 
data is sampled. The falling edge of Φ1 defines the sample point. Then on the rising 
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edge of  Φ2, this new value moves forward through the second (now transparent) 
latch.

sample
input

new value
to output

Φ1

Φ2

These two critical moments (the falling edge of Φ1 and the rising edge of Φ2) define 
this  clock scheme behavior.  Here's  the timing diagram of this  functional  shift 
register:

Note the movement of ones and zeros through the monitor points A, B, C and Out.  
Of course, this four latch shift register can only maintain two bits. Half of the 
latches are transparent and cannot hold values.

Register: Two latches, plus the multiplexer form the core of a register.
IN WE Clk Out
X 0 ↑↓ Q0

A 1 ↑↓ A

By connecting the output through a 2 to 1 mux to the input of the first latch, the 
ability to selectively write (or preserve) a register's value can be controlled. Like 

08:58:22 PM 4 June 2013 LR-10 © Scott & Linda Wills 



the enable signal on the transparent latch,  the write enable (WE) signal either 
selects a new input, or recycle the current output as the input. However this is a 
synchronous behavior in that the changing or preserving of a stored value is in sync 
with the clock signals. This selective write is call a write port.

Read Port: What would a read port be? Writing means changing the register state. 
Reading (or not) has no effect on its value. So what does a read port accomplish? 
Often registers are read onto a shared bus. Since only one value can be read onto 
the bus, a read port is a method of passing the register's contents onto a write (or 
not).  This  has  been  explored in  demultiplexers,  and  is  efficiently  accomplished 
using a pass gate.

WE = RE = 1 WE = RE = 0
The register on the left is being written and read. The register on the right is 
holding a value that is not being read (Out is floating). The behavior of this widely 
used storage element is shown below. Note that read and write are independent 
operations.  Even  when  the  register  is  not  read  (the  output  is  floating),  write 
operations  can  be  performed.  And  when  neither  write  or  read  operations  are 
performed, a bit is still be stored.

IN WE RE Clk Out

X 0 0 ↑↓ Z0 hold

A 1 0 ↑↓ Z0 write

X 0 1 ↑↓ Q0 read

A 1 1 ↑↓ A write & read
Word-Wide Register: Once a one bit register is designed, it can be replicated to 
create a word wide register to store multi-bit values. These parallel registers are 
stored and loaded using multiple bit values. In this example, the word size is four 
bits.  Control  signals  and  clocks  to  read  and  write  the  register  are  shared.  
Individual lines for each input and out bit position are connected separately. Read 
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and write operations can be performed independently, something latches cannot do. 
In this example, the stored value of the register (0101) is unchanged in the four 
examples.

read & write read write hold

Summary: Here's a summary of key points in digital storage:

• Storage is needed for digital systems. It can created using simple cross-
coupled inverting gates in a circuit that is bi-stable.

• A Transparent Latch is can store a bit of data, but it cannot hold data when 
a new bit is being stored. The 10T latch is the workhorse in digital systems.

• A Register can simultaneously be read and written. It is built of two latches, 
one to hold the current value while the other receives the new value.

• A  two-phase  non-overlapping  clock provides  necessary  timing  for  digital 
systems.  Its  parameters  (depth  and  non-overlap  delay)  determine 
performance of the digital system.

• A shift register shifts parallel words over a serial bus, often at high speeds. 
Serial interfaces are widely used in digital systems (USB, SATA, etc.).

• A timing diagram shows how sequential systems evolve in time. Behavioral 
tables cannot fully capture this information.
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