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Designing Computer Systems

Number Systems

Most concepts are easier to learn when you're already familiar with them. But a 
few concepts are more difficult to learn because you know them so well. In our 
early childhood, we learn that abstract symbols represent real things in our world. 
The word “candy” represents something that tastes sweet. The word “bedtime” 
means  you're  about  to  leave  the  party.  A  symbol  and  its  meaning  are  locked 
together in our brain.

This  is  especially  true  for  qualitative  symbols.  Here  we  see  the  symbol  “5” 
represents the quantity five.  In fact, its difficult to describe the symbol  with 
implying its meaning.

5 =
symbol meaning

But for computers, a symbol has no implicit meaning. It is a string of ones and 
zeros. Only when we instruct the computer on how to process a symbol does it have 
meaning. In many programming languages, you must declare the type of a variable, 
(i.e., an integer, a floating point, or a character string)  before you can perform 
operations on it. This allows the compiler to assign the correct instruction for that 
interpretation of the variable's value.

Number systems separates a symbol and its meaning into two distinct concepts: a 
notation and a  representation. Notations determine how symbols can be created 
using strings of characters from a given alphabet. Representations show how to 
assign real world meaning to a given string.
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Native Notations: Humans around the world favor  decimal (base 10) notation. An 
anthropologist might suggest this is because we have ten fingers. People define ten 
characters (0,1,2,3,4,5,6,7,8,9) to represent quantities. These characters form a 
notation  alphabet. We use this alphabet to create multi-character  strings, which 
provide a limitless number of intuitive, unique symbols. In base 10, a N character 
string can provide 10N unique strings.

A computer also has a native notation. It uses binary (base 2) notation because the 
limited multiplicity of its “fingers” maintain digital states: 1 or 0, high or low, true 
or false. It also builds strings out of its two character alphabet (0 and 1). An N 
character binary string provides 2N unique symbols.

Binary, requires longer strings to achieve the same number of symbols. A three 
character decimal string can represent 1000 symbols (000 –  999). It takes ten 
character binary string to achieve the same number of strings (0000000000 – 
1111111111). To keep the length of written symbols manageable, we often use power 
of two bases octal (base 8) and hexadecimal (base 16).

The table below shows the ordered sequences in each notation. Notice that each 
digits  counts  through  the  base's  alphabet.  When  a  digit  reaches  the  last 
character, it wraps back to zero and the next digit position is advanced. In all 
notations, leading zeros are implied, but not drawn.

decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Notational Conversion: Since all notations begin with zeros, strings on a row in the 
table  are  the  same  sequence  number.  Since  we  use  the  sequences  in  order, 
notational  conversion of a string in one notation is accomplished by finding the 
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corresponding position in another notation. For example, the string 11 in decimal is 
1011 in binary, 13 in octal, and B in hexadecimal. This conversion takes no position 
on the meaning of the string. Rather it shows string equivalence.

Since binary, octal, and hexadecimal are all  power of two bases, they are more 
easily  translated because  they each can be represented as  a  whole  number  of 
binary digits or  bits.  Converting from one power of two notation to another is 
simply a matter of regrouping the bits. Here are a few examples:

10101110 (binary) = 010 101 110 = 256 (octal) = 1010 1110 = AE (hexadecimal)

153 (octal) = 001 101 011 = 1101011 (binary) = 0110 1011 = 6B (hexadecimal)

68A (hexadecimal) = 0110 1000 1010 =  0110 1000 1010 (binary) =  011 010 001 010 = 3212 (octal)

A conversion between a  power of  two bases  (e.g.,  binary)  and  decimal  is  more 
complicated.  A  decimal  digit  is  approximately  three  and  a  third  bits,  so  bit 
regrouping  will  not  work.  Notational  conversion  between  binary  and  decimal  is 
accomplished by finding the string sequence position (how many strings is it from 
all zeros) and then converting the number between binary and decimal.

In an arbitrary base B, a N character string provides BN unique symbols. The first 
digit on the right is the one's place. The second digit is the B's place, the third 
digit  is  the  (B2)'s  place,  the  fourth  digit  is  the  (B3)'s  place  etc.  The  familiar 
decimal places are 1s, 10s, 100s, 1000s, … In binary, the places 1s, 2s, 4s, 8s, 16s, … 
are less familiar, but more useful powers of two.

Powers of Two: When you work with computers, you must know the powers of two. 
Bad news: we have to memorize a few of them. Good news: we don't need to know 
very many. Here are the ones to learn:

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32
26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024 = ~1K

Memorizing can be difficult ... but not here. Most folks can compute through 24 in 
your head. 26 is 64. The sixes go together. 28 is 256. Eight bits is a byte so 256 
shows up all the time. 25, 27, and 29 are either twice or half an easy one. And 210 is 
the vehicle for all other powers of two! It is approximately 1000 (1K).

To find larger powers of two, recall that exponents can be reduced like this:
BX+Y = BX · BY

We can  break  larger  powers  of  two  into  groups  in  the  table  above.  Exponent 
multiples of ten can be grouped to become 1000. Here are a few examples.

216 = 26 x 210 = 64 x 1K = 64K 224 = 24 x 210 x 210 = 16 x 1K x 1K = 16M

225 = 25 x 210 x 210 = 32 x 1K x 1K = 32M 232 = 24 x 210 x 210 x 210 = 4 x 1K x 1K x 1K = 4G

241 = 21 x 210 x 210 x 210 x 210 = 2 x (1K)4 = 16T 2-18 = 2-8 x 2-10 = 1 / (256 x 1K) = 1 / 256K
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Binary to Decimal: Using powers of two, binary numbers can be converted using 
the place values. Here's an example:

64's 32's 16's 8's 4's 2's 1's
1 1 1 1 0 0 1

In a base, the order of a string in a notation is found by summing the products of 
each character and its respective digit's significance. In binary, the digit values 
are powers of two. Since characters are either 0 or 1, multiplication is easy. In this 
example, the corresponding decimal string is computed as:

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1

64 + 32 + 16 + 8 + 1

80 + 40 + 1

            121 (decimal)

Note that many of the powers of two sum to form multiples of ten. Here are a few 
more examples. The bases are indicated here with subscript.

1101102 = 32 + 16 + 4 + 2 = 5410 101010102 = 128 + 32 + 8 + 2 = 17010

1000010002 = 256 + 8 = 26410 11112 = 8 + 4 + 2 + 1 = 1510

A string of ones always sums to next place value minus one.

Decimal to Binary: Notational conversion from decimal to binary is similar. Only 
here you subtract away powers of two until you reach zero.

7810 16510 50010

- 64 1000000 - 128 10000000 - 256 100000000
14 37 244
– 8 + 1000 – 32 + 100000 – 128 10000000
6 5 116

- 4 + 100 - 4 + 100 - 64 1000000
2 1 52 
– 2 + 10 – 1 + 1 – 32 100000
0 10011102 0 101001012 20

- 16 10000
4

- 4 100
0 1111101002

Often there are tricky ways to do things. Sometimes they help. Sometimes they 
don't. For decimal to binary conversion, one can simply perform a series of halvings 
(dividing by two). If the number being halved is an even number, list a “0”. If the 
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number being halved is odd, subtract one and list a “1”. When you reach zero, the 
list of ones and zeros is the binary notation. Let's try 78 and 165 this way.

78 39 38 19 18 9 8 4 2 1 0

0 10 110 1110 01110 001110 10011102

165 164 82 41 40 20 10 5 4 2 1 0

1 01 101 0101 00101 100101 0100101 101001012

This trick works by deconstructing the decimal value from its binary components, 
from  least  significant  to  most  significant.  It  gives  the  right  result;  but  it 
sometimes requires more calculations and it is harder to double check the result.

It may appear that integer values are being translated between different bases. 
But we are only finding corresponding strings in different bases. Notations do not 
imply meaning.

Get to the Point: Sometimes strings include a point (a decimal point in base 10) as 
part of the notation. This point divides the string into two parts, a substring to the 
left  of  the  point  and  a  substring  to  the  right.  When  performing  notation 
conversion,  start  at  the  point  and  work  left  and  then  right.  This  addresses 
unwritten  leading  and trailing  zeros.  Let's  try  a  few  power  of  two  conversion 
examples.

10100101.0110112 = 1010 0101 . 0110 1100 = A5.6C16

1101001.11112 = 001 101 001 . 111 100 = 151.748

26.BC16 = 0010 0110 . 1011 1100 = 101 110 . 101 111 = 56.578

46.268 = 100 110 . 010 110 = 0010 0110 . 0101 1000 = 26.5816

Sometimes leading and trailing zero are adding and subtracted to form necessary 
bit groupings. But notice that they always work out, left and right, from the point. 
Binary to decimal conversions with a point is the same, only the bit positions are 
fractions.

4's 2's 1's 1/2's 1/4's
1 0 1 . 1 1

4 + 1 + .5 + .25 = 5.75
8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's
1 0 1 0 . 0 1 0 1

8 + 2 + .25 + .0625 = 10.3125
8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's
1 1 0 1 . 1 0 1 1

8 + 4 + 1 + .5 + .125 + .0625 = 13.6875
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Representations - Finding Meaning in a Digital World:  Although the use of a 
point   has  implications  to  a  sequence's  value,  the  focus  thus  far  has  been  on 
notational  conversion.  A given sequence is  composed of a  specified numbers  of 
characters (N) in a given base (B) offering BN unique codes. How those codes are 
used is dependent on representations.

Unsigned Integers: A representation begins with a requirement: what needs to be 
represented. Suppose a digital system is counting objects being manufactured in a 
factory. The counting numbers (0, 1, 2, …) are needed to maintain a tally. These 
unsigned integers can be associated with notational sequences in an intuitive way.

sequence meaning sequence meaning
0000 “0” 1000 “8”
0001 “1” 1001 “9”
0010 “2” 1010 “10”
0011 “3” 1011 “11”
0100 “4” 1100 “12”
0101 “5” 1101 “13”
0110 “6” 1110 “14”
0111 “7” 1111 “15”

Perhaps this is too intuitive, since this looks like notational conversion from binary 
to decimal. But here the quoted value really does mean a quantity (remember the 
fingers). A four bit binary sequence is used to represent a quantity between  “0” 
and  “15”.   In  general,  when  representing  unsigned  integers,  an  N-bit  binary 
sequence can represent quantities between “0” and “2N -1”. So an eight bit unsigned 
integer can represent quantities between “0” and “255”; a 16 bit unsigned integer 
can represent  “0” to  “65,535” (around 64K),  and a 32 bit  unsigned integer can 
represent  “0” to  “4 billion”.  This  process  is  nothing more than a uniform value 
sequence assignment. An integer value is assigned to each sequence.

Signed Integers: Some applications require negative as well as positive integers. 
While it doesn't have to be this way, a signed representation typically offers an 
equal number of positive and negative quantities. 

signed sequence unsigned signed sequence unsigned
“0” 0000 “0” “-8” 1000 “8”
“1” 0001 “1” “-7” 1001 “9”
“2” 0010 “2” “-6” 1010 “10”
“3” 0011 “3” “-5” 1011 “11”
“4” 0100 “4” “-4” 1100 “12”
“5” 0101 “5” “-3” 1101 “13”
“6” 0110 “6” “-2” 1110 “14”
“7” 0111 “7” “-1” 1111 “15”
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Since half of the sequences are used to represent negative values, there are not as 
many to represent positive quantities.  Here the 16 sequences represent  “-8” to 
“+7”. In general, this N-bit signed integer representation can represent quantities 
from  “-2(N  -  1)” to  “2(N  -  1)  – 1”. A eight bit  signed integer can represent  “-128” to 
“+127”. A 16-bit signed integer can represent “-32,678” to “+32,767” (±32K). A 32-
bit  signed integer can represent  “±2 billion” (±32G). Why isn't it symmetric? 
Because zero has to go somewhere (and use a sequence). Here it is counted as a 
positive value. This signed representation is called two's complement.

There are many choices for signed representations. But only one, two's complement 
is  widely  used,  and  for  good  reasons.  As  number  systems  and  arithmetic  are 
explored, two's complement has many significant advantages other other signed 
representations.

• Sign  and  Magnitude:  This  signed  representation  (used  in  floating  point) 
employs  all  but  one  bits  for  an  unsigned  magnitude.  The  remaining  bit 
indicates  the  sign.  It  problems  include  complex  arithmetic  logic  (since 
addition  sometimes  becomes  subtraction  and  vice  versus)  and  two 
representations of zero (+0 and -0). This may seem like a small matter. But 
comparison to zero is the most commonly performed conditional operation. 
If  there  are  two  values  representing  zero,  this  operation  become  more 
complex.

• One's  Complement:  This  signed  representation  has  a  simple  negation: 
complement  each  bit.  So  +1  (0001)  is  negated  to  -1  (1110).  This 
representation  also  introduces  complexity  is  arithmetic.  And  it  has  two 
values for 0 (0000) and (1111).

Two's complement is related to one's complement. Negation involves complementing 
each bit in the representation. But then one is added: one's complement + one = 
two's complement. It only has one representation of zero (negating zero give zero). 
Sign is easy to determine; the most significant bit of the representation indicates 
the sign (0 = positive, 1 = negative). But it is not a sign bit. And arithmetic using  
two's complement couldn't be easier (one can ignore sign). Two's complement also 
works well with non-integer representations, which come next.

Fixed Point:  Integer representations have a  fixed step size,  the value  one.  All 
adjacent sequences differ by the integer value one. This is its resolution and it is 
fixed. This step size can assume any value, depending on the position of the point 
(which separates whole and fractional parts of the representation). So if the point 
is fixed one bit position to the left of integers, the step becomes 0.5 instead of 
one. This four-bit, fixed point representation offers a different set of values.
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signed sequence unsigned signed sequence unsigned
“0.0” 000.0 “0.0” “-4.0” 100.0 “4.0”
“0.5” 000.1 “0.5” “-3.5” 100.1 “4.5”
“1.0” 001.0 “1.0” “-3.0” 101.0 “5.0”
“1.5” 001.1 “1.5” “-2.5” 101.1 “5.5”
“2.0” 010.0 “2.0” “-2.0” 110.0 “6.0”
“2.5” 010.1 “2.5” “-1.5” 110.1 “6.5”
“3.0” 011.0 “3.0” “-1.0” 111.0 “7.0”
“3.5” 011.1 “3.5” “-0.5” 111.1 “7.5”

For  both  unsigned  and  signed  representations,  there  are  the  same  number  of 
sequences.  With  a  smaller  resolution  (0.5  versus  1),  the  representation  has  a 
smaller range. In general, an N bit  fixed point representation with K bits to the 
right of the binary point has a step size of 1/2K and a range of -2(N – 1)/2K to (2(N - 1) – 
1)/2K. The range is divided by the step size.

If the fixed point is set two bits from the left, the step size and range change. A 
smaller step, 0.25, yields higher resolution, but a smaller range.

signed sequence unsigned signed sequence unsigned
“0.0” 00.00 “0.0” “-2.0” 10.00 “2.0”

“0.25” 00.01 “0.25” “-1.75” 10.01 “2.25”
“0.5” 00.10 “0.5” “-1.5” 10.10 “2.5”

“0.75” 00.11 “0.75” “-1.25” 10.11 “2.75”
“1.0” 01.00 “1.0” “-1.0” 11.00 “3.0”

“1.25” 01.01 “1.25” “-0.75” 11.01 “3.25”
“1.5” 01.10 “1.5” “-0.5” 11.10 “3.5”

“1.75” 01.11 “1.75” “-0.25” 11.11 “3.75”
Fixed point does not require a change to the arithmetic. It is only a matter of 
interpretation of the operands and the result. Fixed point is the presentation of 
choice  for  the financial  world.  All  calculations  must  be accurate  to the  penny, 
regardless  of  the  amount.  This  fixed  resolution  limits  the  range.  Science  and 
engineering often need something else.

Floating Point: Fixed point presentations have a problem in that their accuracy (the 
number of significant figures) is dependent on  the magnitude of the represented 
value. The integer value 23,415,823 may have eight significant figures. But 16 has 
only two.  Floating point has a different,  more complex approach.  Use a certain 
number of bits to represent the magnitude (the significant figures) of a value. 
Then use addition bits to scale it to the correct value. Most people have used this 
approach in scientific notation. The magnitude 6.022 is scaled by 1023 to express 
the number of molecules in a mole. This value would be difficult to express using a 
fixed point representation.
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Floating point breaks the bits of the  representation into fields: sign, mantissa, and 
exponent.

sign mantissa exponent
The sign field is a one bit field indicating the sign of the mantissa. This sign and 
magnitude representation makes sense when scaling the value. The mantissa is the 
largest field and contains the bits that provide the accuracy (significant figures) 
to the value being represented. Since the mantissa does not need to provide the 
scaling, its range is between zero and one. The exponent field is a signed integer 
that scales the mantissa to the proper value. In binary, the exponent is raised to a 
power of two, not ten. In general, a floating point value is computed as:

sign x mantissa x 2exponent

where the sign is ±1, the mantissa is an unsigned fixed point value with the binary 
point  at  the right  end of the sequence (K =  N),  and the exponent  is  a  signed 
integer. Typical field lengths for an IEEE single precision floating point value is 
sign = one bit,  mantissa = 23 bits, and exponent = 8 bits.  This means that the 
unscaled  step  size  is  1/8M  of  the  mantissa.  To  find  the  equivalent  decimal 
significant figures, consider the mantissa range (0 to 8,000,000).  The first six 
digits can assume any value (0-9). The seventh decimal digit can assume 0-8. So 
this  mantissa  maintains  between  six  and  seven  decimal  significant  figures.  In 
general, every ten bits of mantissa provides three decimal significant figures.

The exponent field is a signed (two's complement) integer. Like scientific notation, 
it scales the mantissa to the proper value. It doesn't change the bits, rather it 
moves  the binary  point.  Moving it  right  by  one bit  multiples the value  by  two. 
Moving right two bits multiples by four. Moving right by I bits multiples by 2I. 
Moving left is similar, except it divides by 2I. Because of this exponential scaling, a 
modest range in the exponent field can have an enormous effect on the value. An 
eight bit exponent has a range of -128 to +127. Since the mantissa is between zero 
and one, the final value an be as large as 2127 or as minuscule as 1/2128.

Floating points representations can assume smaller and larger number of bits. IEEE 
double precision floating point employs 64 bits including an eleven bit exponent and 
a 52 bit mantissa for approximately 15 significant figures. A 16 bit floating points 
might have a 10 bit mantissa (three significant figures) and a five bit exponent for 
values from 215 (32K) to 1/216 (1/64K).

Arithmetic operations in floating are more complicated since exponents must be 
adjusted before simple addition and subtraction can be performed in the mantissa. 
Afterwards, a process called normalization must be performed where the mantissa 
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and  exponent  are  adjusted  to  keep  a  one  in  the  most  significant  bit  of  the 
mantissa. This is necessary to maintain the full accuracy of the value. 

In  floating  point,  all  values  have  a  fixed  accuracy  (significant  figures),  but  a 
varying resolution (step size).  This contrasts with fixed point that has a fixed 
resolution,  and a  varying  accuracy.  Fixed point  works  for  financial  calculations. 
Floating point works for science and engineering. Both are important.

Full Disclosure: Floating point standards have many subtle complexities that are 
not covered here. For example, since normalization maintains a one on the most 
significant bit of the mantissa, it can be assume to effectively  add a bit. Other 
field  combinations  are  used  for  rare  but  important  values  like  NaN  (Not  a 
Number). If interested, check out http://grouper.ieee.org/groups/754/.

Symbolic  Values:  Speaking  of  not  a  number,  there  is  a  large  class  of 
representation that don't represent quantities. Take this document, for example. 
Each character represents a letter of the alphabet, and sequences are strings of 
letters forming words,  sentences,  and paragraphs.  One of the oldest  and most 
common  symbolic  representation  is  ASCII  (American  Standard  Code  for 
Information Interchange). This seven bit representation includes the characters 
that  appear  on  a  keyboard:  A-Z,  0-9,  a-z,  characters  for  punctuation,  special 
symbols, etc. Plus some obsolete control characters like bell, ACK/NAK, etc. that 
date back to an era when mechanical teletypes were used to display text. This 
standard was latter expanded to eight bits (256 symbols) for CP/M, MS-DOS, etc. 
but it still lives on. 

One limitation of ASCII is its inability to expand to international character sets. A 
modern alternative is Unicode, a 16-bit character code that embraces the diversity 
of symbols from around the world. While its larger 16 bits versus eight bits, its 
ability to international character sets justifies the extra storage. Still, ASCII is 
far  from gone.  It  still  is  the  primary  representation  used  in  text  files  under 
today's operating systems including Microsoft Windows, Mac OS X, and Linux.

Other  Representations:  There  are  hundreds  of  other  representations  to 
represent images (e.g., JPEG), videos (e.g., XviD), audio (e.g., mp3), vector graphics 
(e.g., postscript), and many other things. However the notations used generate the 
same patterns of sequences.

Summary:  In  digital  computers,  information  is  expressed  in  one  of  several 
notations, and its meaning is defined by one of many representations.

• Today's notations include binary, decimal, and hexadecimal. Powers of two 
fit the binary technology being used. Decimal fits ten fingered humans.
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• Quantitative  representations  include  signed  and  unsigned  fixed  point 
representations integers is a special case). For signed representations, two's 
complement is the representation of choice. Fixed point has a fixed step 
size  (resolution),  but  varying  accuracy.  Floating  point  is  a  more  complex 
representation  with  fixed  accuracy,  but  a  varying  step  size.  Both 
representations have their place in digital systems.

• Symbolic representations are widely used in digital systems. ASCII is an old 
but  widely  used  standard.  Unicode  allow  representation  of  international 
characters.

ASCII Codes

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

0x0 NUL DLE SP 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 " 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ' 7 G W g w

0x8 BS CAN ( 8 H X h x

0x9 HT EM ) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ' K [ k {

0xC FF FS , < L \ l |

0xD CR GS - = M ] m }

0xE SO RS . > N ^ n ~

15 SI US / ? O _ o DEL
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