
Designing Computer Systems

08:46:15 PM 4 June 2013 NS-1 © Scott & Linda Wills

Designing Computer Systems

Number Systems

Most concepts are easier to learn when you're already familiar with them. But a
few concepts are more difficult to learn because you know them so well. In our
early childhood, we learn that abstract symbols represent real things in our world.
The word “candy” represents something that tastes sweet. The word “bedtime”
means you're about to leave the party. A symbol and its meaning are locked
together in our brain.

This is especially true for qualitative symbols. Here we see the symbol “5”
represents the quantity five. In fact, its difficult to describe the symbol with
implying its meaning.

5 =
symbol meaning

But for computers, a symbol has no implicit meaning. It is a string of ones and
zeros. Only when we instruct the computer on how to process a symbol does it have
meaning. In many programming languages, you must declare the type of a variable,
(i.e., an integer, a floating point, or a character string) before you can perform
operations on it. This allows the compiler to assign the correct instruction for that
interpretation of the variable's value.

Number systems separates a symbol and its meaning into two distinct concepts: a
notation and a representation. Notations determine how symbols can be created
using strings of characters from a given alphabet. Representations show how to
assign real world meaning to a given string.

08:46:15 PM 4 June 2013 NS-2 © Scott & Linda Wills

Native Notations: Humans around the world favor decimal (base 10) notation. An
anthropologist might suggest this is because we have ten fingers. People define ten
characters (0,1,2,3,4,5,6,7,8,9) to represent quantities. These characters form a
notation alphabet. We use this alphabet to create multi-character strings, which
provide a limitless number of intuitive, unique symbols. In base 10, a N character
string can provide 10N unique strings.

A computer also has a native notation. It uses binary (base 2) notation because the
limited multiplicity of its “fingers” maintain digital states: 1 or 0, high or low, true
or false. It also builds strings out of its two character alphabet (0 and 1). An N
character binary string provides 2N unique symbols.

Binary, requires longer strings to achieve the same number of symbols. A three
character decimal string can represent 1000 symbols (000 – 999). It takes ten
character binary string to achieve the same number of strings (0000000000 –
1111111111). To keep the length of written symbols manageable, we often use power
of two bases octal (base 8) and hexadecimal (base 16).

The table below shows the ordered sequences in each notation. Notice that each
digits counts through the base's alphabet. When a digit reaches the last
character, it wraps back to zero and the next digit position is advanced. In all
notations, leading zeros are implied, but not drawn.

decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Notational Conversion: Since all notations begin with zeros, strings on a row in the
table are the same sequence number. Since we use the sequences in order,
notational conversion of a string in one notation is accomplished by finding the

08:46:15 PM 4 June 2013 NS-3 © Scott & Linda Wills

corresponding position in another notation. For example, the string 11 in decimal is
1011 in binary, 13 in octal, and B in hexadecimal. This conversion takes no position
on the meaning of the string. Rather it shows string equivalence.

Since binary, octal, and hexadecimal are all power of two bases, they are more
easily translated because they each can be represented as a whole number of
binary digits or bits. Converting from one power of two notation to another is
simply a matter of regrouping the bits. Here are a few examples:

10101110 (binary) = 010 101 110 = 256 (octal) = 1010 1110 = AE (hexadecimal)

153 (octal) = 001 101 011 = 1101011 (binary) = 0110 1011 = 6B (hexadecimal)

68A (hexadecimal) = 0110 1000 1010 = 0110 1000 1010 (binary) = 011 010 001 010 = 3212 (octal)

A conversion between a power of two bases (e.g., binary) and decimal is more
complicated. A decimal digit is approximately three and a third bits, so bit
regrouping will not work. Notational conversion between binary and decimal is
accomplished by finding the string sequence position (how many strings is it from
all zeros) and then converting the number between binary and decimal.

In an arbitrary base B, a N character string provides BN unique symbols. The first
digit on the right is the one's place. The second digit is the B's place, the third
digit is the (B2)'s place, the fourth digit is the (B3)'s place etc. The familiar
decimal places are 1s, 10s, 100s, 1000s, … In binary, the places 1s, 2s, 4s, 8s, 16s, …
are less familiar, but more useful powers of two.

Powers of Two: When you work with computers, you must know the powers of two.
Bad news: we have to memorize a few of them. Good news: we don't need to know
very many. Here are the ones to learn:

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32
26 = 64 27 = 128 28 = 256 29 = 512 210 = 1024 = ~1K

Memorizing can be difficult ... but not here. Most folks can compute through 24 in
your head. 26 is 64. The sixes go together. 28 is 256. Eight bits is a byte so 256
shows up all the time. 25, 27, and 29 are either twice or half an easy one. And 210 is
the vehicle for all other powers of two! It is approximately 1000 (1K).

To find larger powers of two, recall that exponents can be reduced like this:
BX+Y = BX · BY

We can break larger powers of two into groups in the table above. Exponent
multiples of ten can be grouped to become 1000. Here are a few examples.

216 = 26 x 210 = 64 x 1K = 64K 224 = 24 x 210 x 210 = 16 x 1K x 1K = 16M

225 = 25 x 210 x 210 = 32 x 1K x 1K = 32M 232 = 24 x 210 x 210 x 210 = 4 x 1K x 1K x 1K = 4G

241 = 21 x 210 x 210 x 210 x 210 = 2 x (1K)4 = 16T 2-18 = 2-8 x 2-10 = 1 / (256 x 1K) = 1 / 256K

08:46:15 PM 4 June 2013 NS-4 © Scott & Linda Wills

Binary to Decimal: Using powers of two, binary numbers can be converted using
the place values. Here's an example:

64's 32's 16's 8's 4's 2's 1's
1 1 1 1 0 0 1

In a base, the order of a string in a notation is found by summing the products of
each character and its respective digit's significance. In binary, the digit values
are powers of two. Since characters are either 0 or 1, multiplication is easy. In this
example, the corresponding decimal string is computed as:

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 0 x 2 + 1

64 + 32 + 16 + 8 + 1

80 + 40 + 1

 121 (decimal)

Note that many of the powers of two sum to form multiples of ten. Here are a few
more examples. The bases are indicated here with subscript.

1101102 = 32 + 16 + 4 + 2 = 5410 101010102 = 128 + 32 + 8 + 2 = 17010

1000010002 = 256 + 8 = 26410 11112 = 8 + 4 + 2 + 1 = 1510

A string of ones always sums to next place value minus one.

Decimal to Binary: Notational conversion from decimal to binary is similar. Only
here you subtract away powers of two until you reach zero.

7810 16510 50010

- 64 1000000 - 128 10000000 - 256 100000000
14 37 244
– 8 + 1000 – 32 + 100000 – 128 10000000
6 5 116

- 4 + 100 - 4 + 100 - 64 1000000
2 1 52
– 2 + 10 – 1 + 1 – 32 100000
0 10011102 0 101001012 20

- 16 10000
4

- 4 100
0 1111101002

Often there are tricky ways to do things. Sometimes they help. Sometimes they
don't. For decimal to binary conversion, one can simply perform a series of halvings
(dividing by two). If the number being halved is an even number, list a “0”. If the

08:46:15 PM 4 June 2013 NS-5 © Scott & Linda Wills

number being halved is odd, subtract one and list a “1”. When you reach zero, the
list of ones and zeros is the binary notation. Let's try 78 and 165 this way.

78 39 38 19 18 9 8 4 2 1 0

0 10 110 1110 01110 001110 10011102

165 164 82 41 40 20 10 5 4 2 1 0

1 01 101 0101 00101 100101 0100101 101001012

This trick works by deconstructing the decimal value from its binary components,
from least significant to most significant. It gives the right result; but it
sometimes requires more calculations and it is harder to double check the result.

It may appear that integer values are being translated between different bases.
But we are only finding corresponding strings in different bases. Notations do not
imply meaning.

Get to the Point: Sometimes strings include a point (a decimal point in base 10) as
part of the notation. This point divides the string into two parts, a substring to the
left of the point and a substring to the right. When performing notation
conversion, start at the point and work left and then right. This addresses
unwritten leading and trailing zeros. Let's try a few power of two conversion
examples.

10100101.0110112 = 1010 0101 . 0110 1100 = A5.6C16

1101001.11112 = 001 101 001 . 111 100 = 151.748

26.BC16 = 0010 0110 . 1011 1100 = 101 110 . 101 111 = 56.578

46.268 = 100 110 . 010 110 = 0010 0110 . 0101 1000 = 26.5816

Sometimes leading and trailing zero are adding and subtracted to form necessary
bit groupings. But notice that they always work out, left and right, from the point.
Binary to decimal conversions with a point is the same, only the bit positions are
fractions.

4's 2's 1's 1/2's 1/4's
1 0 1 . 1 1

4 + 1 + .5 + .25 = 5.75
8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's
1 0 1 0 . 0 1 0 1

8 + 2 + .25 + .0625 = 10.3125
8's 4's 2's 1's 1/2's 1/4's 1/8's 1/16's
1 1 0 1 . 1 0 1 1

8 + 4 + 1 + .5 + .125 + .0625 = 13.6875

08:46:17 PM 4 June 2013 NS-6 © Scott & Linda Wills

Representations - Finding Meaning in a Digital World: Although the use of a
point has implications to a sequence's value, the focus thus far has been on
notational conversion. A given sequence is composed of a specified numbers of
characters (N) in a given base (B) offering BN unique codes. How those codes are
used is dependent on representations.

Unsigned Integers: A representation begins with a requirement: what needs to be
represented. Suppose a digital system is counting objects being manufactured in a
factory. The counting numbers (0, 1, 2, …) are needed to maintain a tally. These
unsigned integers can be associated with notational sequences in an intuitive way.

sequence meaning sequence meaning
0000 “0” 1000 “8”
0001 “1” 1001 “9”
0010 “2” 1010 “10”
0011 “3” 1011 “11”
0100 “4” 1100 “12”
0101 “5” 1101 “13”
0110 “6” 1110 “14”
0111 “7” 1111 “15”

Perhaps this is too intuitive, since this looks like notational conversion from binary
to decimal. But here the quoted value really does mean a quantity (remember the
fingers). A four bit binary sequence is used to represent a quantity between “0”
and “15”. In general, when representing unsigned integers, an N-bit binary
sequence can represent quantities between “0” and “2N -1”. So an eight bit unsigned
integer can represent quantities between “0” and “255”; a 16 bit unsigned integer
can represent “0” to “65,535” (around 64K), and a 32 bit unsigned integer can
represent “0” to “4 billion”. This process is nothing more than a uniform value
sequence assignment. An integer value is assigned to each sequence.

Signed Integers: Some applications require negative as well as positive integers.
While it doesn't have to be this way, a signed representation typically offers an
equal number of positive and negative quantities.

signed sequence unsigned signed sequence unsigned
“0” 0000 “0” “-8” 1000 “8”
“1” 0001 “1” “-7” 1001 “9”
“2” 0010 “2” “-6” 1010 “10”
“3” 0011 “3” “-5” 1011 “11”
“4” 0100 “4” “-4” 1100 “12”
“5” 0101 “5” “-3” 1101 “13”
“6” 0110 “6” “-2” 1110 “14”
“7” 0111 “7” “-1” 1111 “15”

08:46:17 PM 4 June 2013 NS-7 © Scott & Linda Wills

Since half of the sequences are used to represent negative values, there are not as
many to represent positive quantities. Here the 16 sequences represent “-8” to
“+7”. In general, this N-bit signed integer representation can represent quantities
from “-2(N - 1)” to “2(N - 1) – 1”. A eight bit signed integer can represent “-128” to
“+127”. A 16-bit signed integer can represent “-32,678” to “+32,767” (±32K). A 32-
bit signed integer can represent “±2 billion” (±32G). Why isn't it symmetric?
Because zero has to go somewhere (and use a sequence). Here it is counted as a
positive value. This signed representation is called two's complement.

There are many choices for signed representations. But only one, two's complement
is widely used, and for good reasons. As number systems and arithmetic are
explored, two's complement has many significant advantages other other signed
representations.

• Sign and Magnitude: This signed representation (used in floating point)
employs all but one bits for an unsigned magnitude. The remaining bit
indicates the sign. It problems include complex arithmetic logic (since
addition sometimes becomes subtraction and vice versus) and two
representations of zero (+0 and -0). This may seem like a small matter. But
comparison to zero is the most commonly performed conditional operation.
If there are two values representing zero, this operation become more
complex.

• One's Complement: This signed representation has a simple negation:
complement each bit. So +1 (0001) is negated to -1 (1110). This
representation also introduces complexity is arithmetic. And it has two
values for 0 (0000) and (1111).

Two's complement is related to one's complement. Negation involves complementing
each bit in the representation. But then one is added: one's complement + one =
two's complement. It only has one representation of zero (negating zero give zero).
Sign is easy to determine; the most significant bit of the representation indicates
the sign (0 = positive, 1 = negative). But it is not a sign bit. And arithmetic using
two's complement couldn't be easier (one can ignore sign). Two's complement also
works well with non-integer representations, which come next.

Fixed Point: Integer representations have a fixed step size, the value one. All
adjacent sequences differ by the integer value one. This is its resolution and it is
fixed. This step size can assume any value, depending on the position of the point
(which separates whole and fractional parts of the representation). So if the point
is fixed one bit position to the left of integers, the step becomes 0.5 instead of
one. This four-bit, fixed point representation offers a different set of values.

08:46:17 PM 4 June 2013 NS-8 © Scott & Linda Wills

signed sequence unsigned signed sequence unsigned
“0.0” 000.0 “0.0” “-4.0” 100.0 “4.0”
“0.5” 000.1 “0.5” “-3.5” 100.1 “4.5”
“1.0” 001.0 “1.0” “-3.0” 101.0 “5.0”
“1.5” 001.1 “1.5” “-2.5” 101.1 “5.5”
“2.0” 010.0 “2.0” “-2.0” 110.0 “6.0”
“2.5” 010.1 “2.5” “-1.5” 110.1 “6.5”
“3.0” 011.0 “3.0” “-1.0” 111.0 “7.0”
“3.5” 011.1 “3.5” “-0.5” 111.1 “7.5”

For both unsigned and signed representations, there are the same number of
sequences. With a smaller resolution (0.5 versus 1), the representation has a
smaller range. In general, an N bit fixed point representation with K bits to the
right of the binary point has a step size of 1/2K and a range of -2(N – 1)/2K to (2(N - 1) –
1)/2K. The range is divided by the step size.

If the fixed point is set two bits from the left, the step size and range change. A
smaller step, 0.25, yields higher resolution, but a smaller range.

signed sequence unsigned signed sequence unsigned
“0.0” 00.00 “0.0” “-2.0” 10.00 “2.0”

“0.25” 00.01 “0.25” “-1.75” 10.01 “2.25”
“0.5” 00.10 “0.5” “-1.5” 10.10 “2.5”

“0.75” 00.11 “0.75” “-1.25” 10.11 “2.75”
“1.0” 01.00 “1.0” “-1.0” 11.00 “3.0”

“1.25” 01.01 “1.25” “-0.75” 11.01 “3.25”
“1.5” 01.10 “1.5” “-0.5” 11.10 “3.5”

“1.75” 01.11 “1.75” “-0.25” 11.11 “3.75”
Fixed point does not require a change to the arithmetic. It is only a matter of
interpretation of the operands and the result. Fixed point is the presentation of
choice for the financial world. All calculations must be accurate to the penny,
regardless of the amount. This fixed resolution limits the range. Science and
engineering often need something else.

Floating Point: Fixed point presentations have a problem in that their accuracy (the
number of significant figures) is dependent on the magnitude of the represented
value. The integer value 23,415,823 may have eight significant figures. But 16 has
only two. Floating point has a different, more complex approach. Use a certain
number of bits to represent the magnitude (the significant figures) of a value.
Then use addition bits to scale it to the correct value. Most people have used this
approach in scientific notation. The magnitude 6.022 is scaled by 1023 to express
the number of molecules in a mole. This value would be difficult to express using a
fixed point representation.

08:46:17 PM 4 June 2013 NS-9 © Scott & Linda Wills

Floating point breaks the bits of the representation into fields: sign, mantissa, and
exponent.

sign mantissa exponent
The sign field is a one bit field indicating the sign of the mantissa. This sign and
magnitude representation makes sense when scaling the value. The mantissa is the
largest field and contains the bits that provide the accuracy (significant figures)
to the value being represented. Since the mantissa does not need to provide the
scaling, its range is between zero and one. The exponent field is a signed integer
that scales the mantissa to the proper value. In binary, the exponent is raised to a
power of two, not ten. In general, a floating point value is computed as:

sign x mantissa x 2exponent

where the sign is ±1, the mantissa is an unsigned fixed point value with the binary
point at the right end of the sequence (K = N), and the exponent is a signed
integer. Typical field lengths for an IEEE single precision floating point value is
sign = one bit, mantissa = 23 bits, and exponent = 8 bits. This means that the
unscaled step size is 1/8M of the mantissa. To find the equivalent decimal
significant figures, consider the mantissa range (0 to 8,000,000). The first six
digits can assume any value (0-9). The seventh decimal digit can assume 0-8. So
this mantissa maintains between six and seven decimal significant figures. In
general, every ten bits of mantissa provides three decimal significant figures.

The exponent field is a signed (two's complement) integer. Like scientific notation,
it scales the mantissa to the proper value. It doesn't change the bits, rather it
moves the binary point. Moving it right by one bit multiples the value by two.
Moving right two bits multiples by four. Moving right by I bits multiples by 2I.
Moving left is similar, except it divides by 2I. Because of this exponential scaling, a
modest range in the exponent field can have an enormous effect on the value. An
eight bit exponent has a range of -128 to +127. Since the mantissa is between zero
and one, the final value an be as large as 2127 or as minuscule as 1/2128.

Floating points representations can assume smaller and larger number of bits. IEEE
double precision floating point employs 64 bits including an eleven bit exponent and
a 52 bit mantissa for approximately 15 significant figures. A 16 bit floating points
might have a 10 bit mantissa (three significant figures) and a five bit exponent for
values from 215 (32K) to 1/216 (1/64K).

Arithmetic operations in floating are more complicated since exponents must be
adjusted before simple addition and subtraction can be performed in the mantissa.
Afterwards, a process called normalization must be performed where the mantissa

08:46:17 PM 4 June 2013 NS-10 © Scott & Linda Wills

and exponent are adjusted to keep a one in the most significant bit of the
mantissa. This is necessary to maintain the full accuracy of the value.

In floating point, all values have a fixed accuracy (significant figures), but a
varying resolution (step size). This contrasts with fixed point that has a fixed
resolution, and a varying accuracy. Fixed point works for financial calculations.
Floating point works for science and engineering. Both are important.

Full Disclosure: Floating point standards have many subtle complexities that are
not covered here. For example, since normalization maintains a one on the most
significant bit of the mantissa, it can be assume to effectively add a bit. Other
field combinations are used for rare but important values like NaN (Not a
Number). If interested, check out http://grouper.ieee.org/groups/754/.

Symbolic Values: Speaking of not a number, there is a large class of
representation that don't represent quantities. Take this document, for example.
Each character represents a letter of the alphabet, and sequences are strings of
letters forming words, sentences, and paragraphs. One of the oldest and most
common symbolic representation is ASCII (American Standard Code for
Information Interchange). This seven bit representation includes the characters
that appear on a keyboard: A-Z, 0-9, a-z, characters for punctuation, special
symbols, etc. Plus some obsolete control characters like bell, ACK/NAK, etc. that
date back to an era when mechanical teletypes were used to display text. This
standard was latter expanded to eight bits (256 symbols) for CP/M, MS-DOS, etc.
but it still lives on.

One limitation of ASCII is its inability to expand to international character sets. A
modern alternative is Unicode, a 16-bit character code that embraces the diversity
of symbols from around the world. While its larger 16 bits versus eight bits, its
ability to international character sets justifies the extra storage. Still, ASCII is
far from gone. It still is the primary representation used in text files under
today's operating systems including Microsoft Windows, Mac OS X, and Linux.

Other Representations: There are hundreds of other representations to
represent images (e.g., JPEG), videos (e.g., XviD), audio (e.g., mp3), vector graphics
(e.g., postscript), and many other things. However the notations used generate the
same patterns of sequences.

Summary: In digital computers, information is expressed in one of several
notations, and its meaning is defined by one of many representations.

• Today's notations include binary, decimal, and hexadecimal. Powers of two
fit the binary technology being used. Decimal fits ten fingered humans.

08:46:17 PM 4 June 2013 NS-11 © Scott & Linda Wills

http://grouper.ieee.org/groups/754/

• Quantitative representations include signed and unsigned fixed point
representations integers is a special case). For signed representations, two's
complement is the representation of choice. Fixed point has a fixed step
size (resolution), but varying accuracy. Floating point is a more complex
representation with fixed accuracy, but a varying step size. Both
representations have their place in digital systems.

• Symbolic representations are widely used in digital systems. ASCII is an old
but widely used standard. Unicode allow representation of international
characters.

ASCII Codes

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

0x0 NUL DLE SP 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 " 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ' 7 G W g w

0x8 BS CAN (8 H X h x

0x9 HT EM) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ' K [k {

0xC FF FS , < L \ l |

0xD CR GS - = M] m }

0xE SO RS . > N ^ n ~

15 SI US / ? O _ o DEL

08:46:17 PM 4 June 2013 NS-12 © Scott & Linda Wills

