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Designing Computer Systems

Boolean Algebra

Programmable computers can exhibit amazing complexity and generality. And they 
do it all with simple operations on binary data. This is surprising since our world is 
full of quantitative computation. How can a computer complete complex tasks with 
simple skills?

A Little Logic: Computers use logic to solve problems. Computation is built from 
combinations of three logical operations: AND, OR, and NOT. Lucky for us, these 
operations have intuitive meanings.

AND In order to get a good grade in ECE 2030, a student should come to 
class AND take good notes AND work study problems.

OR Today’s computers run Microsoft Windows 7 OR Mac OS X OR Linux.
NOT Campus food is NOT a good value.

Surprisingly, these three functions underlie every operation performed by today’s 
computers. To achieve usefulness and generality, we must be able to express them 
precisely and compactly. From an early age, we have used arithmetic expressions to 
represent equations with multi-valued variables and values.

Cost = X · $2.00 + Y · $1.50

In  the  world  of  logic,  all  variables  have  one  of  two values:  true or  false.  But 
expressions  can  be  written  in  the  otherwise  familiar  form  of  an  arithmetic 
expression.  We’ll  use the “+” operator to represent OR and the “·” operator to 
represent AND. The following is a simple example of a Boolean expression:

Out = A · B + C Out is true if A AND B are true OR C is true

Just like in arithmetic expressions, operation precedence determines the order of 
evaluation. AND has higher precedence than OR just as multiplication has higher 
precedence than addition. Parentheses can be used to specify precise operation 
evaluation order if precedence is not right. Note that the expression below closely 
resembles the previous example.  But it has a  different behavior  (e.g.,  consider 
each when A is false and C is true.)

Out = A · (B + C) Out is true if A is true AND (B OR C is true)

Is NOT enough?: NOT (also known as complement) is represented by a bar over a 
variable or expression. So A is the opposite of A (i.e., if A is true, A is false and 
vise versa). When a bar extends over an expression, (e.g.,  A+B) the result of the 
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expression is complemented. When a bar extends over a subexpression, it implies 
that  the  subexpression  is  evaluated  first  and  then  complemented.  It’s  like 
parentheses around the subexpression.

Many years ago in the 1800s, the mathematics of these binary variables and logical 
functions was described by a man named George Boole and a few of his colleagues. 
Now we call this mathematics Boolean Algebra.

Operation  Behavior:  These  logical  functions  have  intuitive  behaviors.  An  AND 
expression is true if all of its variables are true. An OR expression is true if any of 
its variables are true. A NOT expression is true if its single variable is false.

Sometimes a table is used to specify the behavior of a Boolean expression. The 
table  lists  all  possible  input  combinations  of  the  right  side  and  the  resulting 
outputs on the left side. This behavior specification is called a truth table. Because 
“true” and “false” are hard to right compactly, we’ll use 1 and 0 to represent these 
values. Here is a summary of AND, OR, and NOT behaviors using true tables.

A B A · B
0 0 0
1 0 0
0 1 0
1 1 1

A B A + B
0 0 0
1 0 1
0 1 1
1 1 1

A A
0 1
1 0

Truth tables can have more than two inputs; just so long as all  combinations of 
inputs values are included. If a combination was left out, then the behavior would 
not be fully specified. If there are i inputs, then there are 2 i combinations. It is 
also possible to have multiple outputs in a table, so long as all results are functions 
of the same inputs. Here are several Boolean expressions with three variables:

A B C A · B · C A + B + C A · B + C A · (B + C)
0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
1 1 0 0 1 1 1
0 0 1 0 1 1 0
1 0 1 0 1 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

Three variable AND and OR functions have expected behaviors. The AND output is 
true if all of the inputs are true. The OR output is true if any of the inputs are 
true. In the third expression, AND is higher precedence than OR. So the output is 
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true if either A AND B are true OR C is true. In the last expression, A must be 
true AND either B OR C (or both B and C) must be true for the output to be true.

There are a few basic properties of Boolean algebra that make it both familiar and 
convenient (plus a few new, not-so-familiar properties). 

property AND OR

identity A · 1 = A A + 0 = A

commutativity A · B = B · A A + B = B + A

associativity (A · B) · C = A · (B · C) (A + B) + C = A + (B + C)

distributivity A · (B + C) = (A · B) + (A · C) A + (B · C) = (A + B) · (A + C)

absorption A · (A + B) = A A + (A · B) = A

The identity, commutative, and associative properties are intuitive. Distributivity 
of AND over OR makes sense. OR over AND is new (don’t try this with arithmetic 
addition  over  multiplication;  it  doesn’t  work!).  Absorption  is  a  new property  of 
Boolean algebra. It comes in handy for simplifying expressions.

Generally, working with Boolean expressions is a lot like working with arithmetic 
expressions, with a few notable differences.

And  that’s  NOT  all:  The  complement  (NOT)  function  adds  an  interesting 
dimension  to  the  math.  Where  quantitative  expressions  have  a  rich  range  and 
domain  for  inputs  and  outputs,  binary  expression  are  decidedly  limited.  Any 
operation  in  a  Boolean  expression  can  have  its  inputs  and/or  its  output 
complemented. But results will still be either true or false.

In fact most Boolean expression design extends the set of logical functions with 
NOTed AND (NAND) and NOTed OR (NOR). These functions are computed by 
complementing the result of the core operation.

AND NAND OR NOR
A B A·B
0 0 0
1 0 0
0 1 0
1 1 1

A B A·B
0 0 1
1 0 1
0 1 1
1 1 0

A B A+B
0 0 0
1 0 1
0 1 1
1 1 1

A B A+B
0 0 1
1 0 0
0 1 0
1 1 0

Here’s where limited variable values and a small collection of basic operations leads 
to one of the most significant relationships in computation … DeMorgan’s Theorem!
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Sometimes the most amazing concepts are easy to see, when you look in the right 
way.  In  the  table  above,  it’s  clear  that  NAND  is  just  AND  with  its  output 
complemented. All the zeros become ones and the one becomes zero. It’s also clear 
that OR resembles NAND but for it being upside down. If all  inputs to OR are 
complemented, the table flips and it matches NAND.

Complementing the inputs or the output of a NAND reverses this transformation. 
If inputs or an output is complemented twice, the function returns to its original 
behavior, leaving it unchanged. This supports reversible transformations between 
NAND and its left and right neighbors.

AND NAND OR
A B A·B
0 0 0
1 0 0
0 1 0
1 1 1

complement
output

A B
0 0 1
1 0 1
0 1 1
1 1 0

complement
inputs

A B A+B
0 0 0
1 0 1
0 1 1
1 1 1

Note that the transformations to obtain the NAND function can be employed for 
any of the four logical functions. To determine the necessary neighbor functions, 
consider cutting out the four function table above and wrapping it into a cylinder 
where  AND and  NOR  are  now  neighbors.  Or  better  still,  let’s  draw  the  four 
functions in a two dimensional table, shown below. This is DeMorgan’s square and it 
shows how any logical function can be transformed into any other logical function 
using NOT gates.

← complement output →
AND NAND

in
pu

ts
 →

A B A·B
0 0 0
1 0 0
0 1 0
1 1 1

A B
0 0 1
1 0 1
0 1 1
1 1 0

NOR OR

←
co

m
pl

em
en

t A B
0 0 1
1 0 0
0 1 0
1 1 0

A B A+B
0 0 0
1 0 1
0 1 1
1 1 1
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You can start with a logical function, and by complementing all its inputs and/or its 
output, you can arrive at any other logical function. This has a profound effect on 
digital system design. Let’s hear it for DeMorgan!

This  principle  can  be  applied  to  Boolean  expressions  as  well.  If  you  want  to 
transform an OR into an AND, just complement all the OR inputs and its output. 
Let’s try this process on a few expressions.

original expression A⋅B A⋅BC  A⋅B⋅C

AND becomes OR AB ABC  ABC

complement inputs AB ABC  ABC

complement output AB A BC  ABC

equivalent expression AB A BC  ABC

In  the  first  example,  an  AND  function  is  turned  into  an  OR  function  by 
complementing  the  inputs  and  the  output.  The  second  example  has  the  same 
change,  but one of the inputs to the AND is a subexpression.  Note that when 
inputs  are  complemented,  this  subexpression  receives  a  bar,  but  is  otherwise 
unchanged.  Just  like  this  first  input  A,  the  subexpression  is  the  input  to  the 
original  AND function.  The third example  has  a  three input  AND, so all  three 
inputs  must  be  complemented.  Note  also  that  the  second  input   is  already 
complemented. When it is complemented again, it has double bars. But when any 
variable or subexpression is complemented twice, the bars cancel out.

This DeMorgan transformation allows transformation of an OR to an AND using the 
same steps. It can be applied to the last evaluated function, the first evaluated 
function, or anything in between. It can even be applied to an entire expression (or 
subexpression) all at once … although some care must be exercised.

original expression AB⋅C  AB ⋅CD  A⋅BCD

swap AND and OR A⋅BC  A⋅B C⋅D  AB ⋅C⋅D

complement inputs A⋅BC  A⋅BC⋅D AB ⋅C⋅D

complement output A⋅BC  A⋅BC⋅D AB ⋅C⋅D

equivalent expression A⋅BC  A⋅BC⋅D AB ⋅C⋅D

In the first example, both AND and OR functions are swapped. Then all inputs and 
the  output  are  complemented.  One  might  ask  why  no  bars  are  added  on 
subexpressions (e.g., over (B·C)). The reason is that each subexpression is both an 
output for one function and an input for another. Since both are complemented, 
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the two bars cancel out. Only the input variables (e.g., A, B, and C) and the last 
function to be executed (the outermost function) will be complemented.

Note also that the function evaluation order is invariant throughout this process. 
In the first example,  B is first ANDed with C. Then the result is ORed with A. 
After the transformation is complete, this is still the order. Often parentheses 
must  be  added  to  preserve  this  order  since  AND  and  OR  have  different 
precedence. Sometime parentheses can be dropped (like in the second example) 
since the new function precedence implies the correct (original) evaluation order.

In  the  second  example,  an  initial  bar  over  the  outermost  function  (AND)  is 
canceled when the entire expression is complemented. Note also that the bars over 
inputs are reversed.  In  the third example,  a  bar  over  the earlier  OR function 
(A●B+C) remains unchanged through the transformation.

Eliminating  Big  Bars:  Often  implementation  of  Boolean  expressions  requires 
transforming them to a required form. For example, switch implementation needs a 
Boolean expression with complements (bars) only over the input variables (literals). 
If  an  expression  has  complements  over  larger  subexpressions  (big  bars), 
DeMorgan’s theorem must be applied to eliminate them. Here’s an example.

Out=ABC⋅D expression with many big bars

1 AB⋅C⋅D replace final AND with OR, and

2 Out=AB⋅C⋅D complement inputs and output

3 Out= AB ⋅C⋅D remove double bars

4 AB ⋅CD replace first AND with OR, and

5 Out= AB ⋅CD complement inputs and output

6 Out= AB ⋅CD  remove double bars
When eliminating  big  bars,  one  should  start  with  the  outermost  complemented 
function. In this case, the OR in the center of the expression comes first. In step 
1,  it  is  replaced  by  an  AND.  The  function's  inputs  and  outputs  are  then 
complemented.  Then  double  bars  are removed.  Note that  parentheses  must  be 
added to maintain the same evaluation order. These first steps remove the big 
bars from the initial expression; but a new big bar is created over C+D. So in step 
4, this OR is replaced by an AND. Then its inputs and outputs are complemented. 
Again parentheses must be added to preserve the original evaluation order. The 
final expression (step 6) has an equivalent expression without big bars.
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DeMorgan's  Theorem  allows  us  to  transform  a  Boolean  expression  into  many 
equivalent expressions. But which one is right? That depends on the situation. If 
we  are  designing  an  implementation  with  switches,  eliminating  big  bars  is  an 
important  step  in  the  process.  For  gate  design,  we  might  want  to  use  logical 
operations  that  better  match  the  implementation  technology.  Regardless  of 
implementation, we might just want to use a form of the expression that most 
clearly expresses (to a fellow engineer) the function we require.

In most cases, we can choose the equivalent expression that fits our needs. But 
how can we evaluate expressions for equivalence?

Standard  Forms:  There  are  two  standard  forms  that  offer  a  canonical 
representation  of  the  expression.  Let's  explore  these  forms  starting  with  a 
function's behavior in a truth table.

A B C Out
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 1

To correctly express this function, we must show where its output is true (1) and 
where its output is false (0). We can accomplish this in two ways. Let's start with 
the “easy” one, expressing when the output is true. There are four cases.

A B C Out
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

Consider the first case, when A is true and B is false and C is false. We can create 
an expression to cover the case: A·B·C. If this were the only case where the output 
is true, this would accurately describe the function. It is an AND expression that 
contains all the inputs in their true (e.g., A) or complemented (e.g., B) form. This is 
called a minterm. But there are three other cases. The output is true when A·B·C is 
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true or when its the second case A·B·C or the third case A·B·C or the fourth case 
A·B·C. This behavior forms an OR expression.

Out =  A·B·C + A·B·C + A·B·C +  A·B·C

Since this is an OR  function applied to  AND expressions,  it's called a Sum Of 
Products  (SOP).  All inputs  are included  in each  product  term (minterms).  So this 
becomes a canonical  expression for the  function's  behavior:  a sum of products  
using minterms. Everyone starting with this behavior will  arrive at  the identical 
Boolean expression.

If one works from bottom to top in the truth table, a different order of inputs can 
be derived.

Out =  C·B·A +C·B·A + C ·B·A + C·B·A

This is  an identical expression  (but for commutative ambiguity). It has the same 
logical operations applied to the same forms of the inputs.

You might notice that when B and C are true, the output is true, independent of A. 
The resulting expression becomes: Out =  A·B·C + A·B·C + B·C. This is simpler, but 
not canonical since it is not composed of minterms.

There's another way to express this function behavior that is rooted in the binary 
world.

Popeye Logic: In the 1980 movie “Popeye”, the title character is in denial about his 
father being the oppressive “Commodore” in their town, Sweet Haven (“My Papa 
ain't  the  Commodore!”).  This  denial  is  present  when  he  asks  directions  to  the 
Commodore's location (“Where ain't he?”). In our multivalued world, this is not so 
easy.  While  “north”  is  unambiguous,  “not  north”  could  be  any  direction  except 
north. But in binary, things are different. We can state when something is true. Or 
we can use “Popeye Logic” and state when it is NOT false. Let's try Popeye logic on 
this behavior.

A B C Out
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1
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Suppose the only false value was the second one, when A is false, B is true, and C is 
false. If all the other outputs were true, we could express the function by stating 
when its not this case (“when it ain't  A·B·C ”). As in the real world, this is more 
than one thing; it is all the truth table entries except for A·B·C. But binary makes 
expressing all the cases easier. In the expression A·B·C, A is false. So whenever A 
is true, the output is true. Or whenever B is false, the output is true. Or whenever 
C is true, the output is true. In fact, the function behavior is true whenever A is 
true or B is false  or C is true (A+B+C).  This expression does not describe when 
A·B·C is true, rather it covers all other cases, when  “A·B·C ain't true”.  The term 
A+B+C is an OR function of all inputs in their true or compliment form.  This is a 
maxterm. But this only works if the second case was the only case when the output 
is false. What about when more than one case is false?

In this example,  the output is false when  A·B·C or  A·B·C or  A·B·C or  A·B·C.  So 
showing when  the output is true requires  expressing when it is not any of these 
cases. It is not  A·B·C when A is true or B is true or C is true (A+B+C).  It is not 
A·B·C when A is true or B is false or C is true (A+B+C).  It is not A·B·C when A is 
true or B is true or C is false (A+B+C). It is not A·B·C when A is false or B is true or 
C is false (A+B+C). But since the function output is only true when it is none of 
these cases,  A+B+C,  A+B+C,  A+B+C,  and  A+B+C must all be true for the function 
output to be true. So we can express the function:

Out = (A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)

Since this is an AND expression of OR terms, it is called a Product of Sums (POS). 
Using  maxterms makes this  canonical,  but  different from the sum of products 
using  minterms.  There  is  no  direct  way  to  transform  a  SOP  using  minterms 
expression into a POS expression using maxterms or vice versa.  Standard forms 
provide a good way to clearly express a behavior. 

Summary: Boolean algebra is the mathematics of digital computers. Here are the 
key points:

• Variables have one of two values (0 or 1).

• Functions include AND, OR, and NOT.

• A Boolean expression containing these functions can be used to specify a 
more complex behavior. Truth tables can also define this behavior.

• Boolean algebra exhibits many familiar and useful properties (plus some new 
ones).

08:34:47 PM 4 June 2013 BA-10 © Scott & Linda Wills



• DeMorgan’s square shows how any logical operation can be transformed into 
any other logical function by complementing the inputs and/or output. 

• DeMorgan’s Theorem allows Boolean expressions to be transformed into an 
equivalent expression that employs different logical functions.

• Standard forms provide a canonical expression in SOP and POS forms.
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