
Designing Computer Systems

Building Blocks

08:44:28 PM 4 June 2013 BB-1 © Scott & Linda Wills

Designing Computer Systems

Building Blocks

A logic gate employs many switches to achieve a more complex behavior. Now we’ll
use gates to build an even more specialized, more powerful set of building blocks.

Encoders / Decoders: A binary digit or bit is the fundamental representational
element in digital computers. But a bit by itself is limited to two states: O and 1.
Fortunately, many bits can be grouped to form more interesting strings. This can
be done in different ways. For example, three bits in a car might indicate whether
(A) the door is open (B) the headlights are on, and (C) the seatbelt is fastened.
These conditions are independent and can occur in any combination. So each bit in
the string has a simple coding:

A door B headlights C seatbelt
0 open 0 off 0 unfastened
1 closed 1 on 1 fastened

In the transmission, three bits might represent its operation state:

C B A state
0 0 0 neutral
0 0 1 1st gear
0 1 0 2nd gear
0 1 1 3rd gear
1 0 0 4th gear
1 0 1 5th gear
1 1 0 fault
1 1 1 reverse

In this case, only one state can exist at a time. So rather than having eight
separate bits to represent the transmission’s state, three bits are used to encode
one of the eight possible states. This requires additional decoding when this
information is used. In order to illuminate the “reverse” indicator on the dash
board (and turn on the backup lights), all three bits are required to generate the
control signal. A different set of values for A, B, and C indicates a different state.
The Boolean expression for two of these states are:

Reverse = A · B · C 1st gear= A · B · C

The logic to decode these conditions from the three bits is shown below.

08:44:28 PM 4 June 2013 BB-2 © Scott & Linda Wills

Encoding things in this ways reduces the number of bits to be stored and
communicated (a good thing). But it requires logic to decode a condition from that
signal. Let’s explore a more common type of decoder: a multi-bit binary decoder.

N-to-M Binary Decoder: In many systems, it is useful to encode one of several
states as a multi-bit binary number. In the transmission example, we used a three
number value to represent on of eight conditions. More generally we can use N bits
to represent 2N unique states. Although we can use logic to decode each state
independently, we can envision a generic decoder that takes an N bit binary number
as input, and produces M separate outputs. Here's a N to M decoder.

I
0

I
1

I
n-1

...

N-bit
binary
number N

 t
o

M
de

co
de

r

...

O1
O0

O2
O3
O4
O5
O6

Om

O7

M binary
outputs

The value of the input, 0 to (2N – 1) causes the corresponding output to be asserted
(set true), while the other outputs remain false. If the input is “101”, O5 is high
while all other outputs are low. Because there are times when the input data may
not be valid, an enable input controls when the decoding process takes place. When
this is low, the input binary number is ignored and all outputs are low.

Here are the behaviors of several binary decoders: 1 to 2, 2 to 4, and 3 to 8. Note
that I2, I1, I0 form a one, two, or three bit binary number whereas O0 – O7 are just
outputs labeled with a number. The input binary number determines which output is
asserted.

08:44:28 PM 4 June 2013 BB-3 © Scott & Linda Wills

I2 I1 I0 En O0 O1 O2 O3 O4 O5 O6 O7

X X X 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1

Implementing a decoder with gates is straightforward. Since each output is high in
only one case, a sum of products expression contains a single minterm. For a 2 to 4
decoder (the blue truth table), the output expressions are easily expressed and
implemented.

O0= I 1⋅I 0⋅En EnIIO ⋅⋅= 011 EnIIO ⋅⋅= 012 EnIIO ⋅⋅= 013

BCD to 7 Segment Decoder: Not all decoders assert one of M outputs. Sometimes
the decoded outputs have a different requirement. For example, many numerical
displays use a seven segment display to show a decimal digit. The digits are labeled
a, b, c, d, e, f, and g. Any decimal digit (0-9) can be created by turning on different
combination of these named segments. A four bit binary coded decimal (BCD) can
be used as input to a decoder than switches on the proper segments for the
corresponding digit character. When enable is low, all segments are switched off,
blanking the display.

08:44:30 PM 4 June 2013 BB-4 © Scott & Linda Wills

a

b

c

d

e

f

g

I3 I2 I1 I0 En Oa Ob Oc Od Oe Of Og

X X X X 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 1 1 0 1 1 0 0 0 0
0 0 1 0 1 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 0 0 1
0 1 0 0 1 0 1 1 0 0 1 1
0 1 0 1 1 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1

Here multiple outputs are asserted for each code. But the gate implementation is
still direct. Each of the seven outputs can be expressed and simplified as a
function of the four bit binary number and enable.

Decoders extract the coded information in a binary string to assert one or more
outputs. They are a widely used building block. But how do we get the encoded word
in the first place? Perhaps by using an encoder !

Encoders: If the job of decoders is to turn an N-bit coded binary string into M
uncoded outputs, then an encoder must perform the reverse process: turning an
asserted input into a coded binary string (a N-bit binary number). This is more
complicated than is sounds.

08:44:30 PM 4 June 2013 BB-5 © Scott & Linda Wills

O
0

O
1

O
n-1

...

N-bit
binary
number

M
 t

o
N

en
co

de
r

...

I1
I0

I2
I3
I4
I5
I6

Im

I7

M binary
inputs

Consider the behavior of a 2 to 4 encoder.

I0 I1 I2 I3 O1 O0

1 0 0

1 0 1

1 1 0

1 1 1

O
0

O
1

4
to

 2
en

co
de

r I1

I0

I2

I3

When a single input is asserted, the output string corresponds to the number of
the asserted input. For example, when I2 is asserted, the output string is “10”
which represents a binary “2”. An ambiguity occurs when no inputs are asserted.
What should the output be. Since all 2N output values already have a defined
meaning (i.e., the number of the asserted input), what remains to indicate no
asserted inputs? Its time to add a new output: Valid.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

O
0

O
1

4
to

 2
en

co
de

r I1

I0

I2

I3
Valid

The valid output (V) indicates that an input is asserted and an valid encoded output
is available. If no inputs are asserted, the valid signal is low and the outputs are

08:44:30 PM 4 June 2013 BB-6 © Scott & Linda Wills

undefined. When using an encoder, the outputs should only be sampled when V is
high. If V is low, no inputs are asserted to encode.

What's your priority?: But what happens when more than one input is asserted?
In this case, the inputs require a priority scheme so that the highest priority input
is encoded into a binary output value. Input priority can be used to expand the five
case behavior table (show above) into the full 16 cases that can occur. That assume
a simple priority scheme:

I3 > I2 > I1 > I0

Under this scheme, if I3 is asserted, the state of the other inputs is of no
concern. I3 will be encoded as output 11. If I3 is zero, but I2 is asserted, the
output will reflect this encoding: 10. If I1 is the asserted value being encoded
(because I3 and I2 are zero), the output becomes 01. Finally, if only I0 is asserted,
the output value is 00.

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 0 0 1 0 0

X 1 0 0 1 0 1

X X 1 0 1 1 0

X X X 1 1 1 1

This leads to a implementation by simplifying the output behaviors as Boolean
expression. Normally Karnaugh Maps are needed. But this behavior has obvious
expressions.

V=I0 I1 I2 I3

O1=I3 I2

O0= I3I1⋅I2

If the input priorities are changed, the Xs and 0s can be easily changed to reflect
the new behavior. The rows are processed in a different order. But the same
process is applied. In order for a given row to represent the encoded input, all
higher priority inputs must be 0 while all lower priority inputs are ignored (don't
cared). Here's another example.

08:44:30 PM 4 June 2013 BB-7 © Scott & Linda Wills

I1 > I3 > I0 > I2

I0 I1 I2 I3 V O1 O0

0 0 0 0 0 X X

1 0 X 0 1 0 0

X 1 X X 1 0 1

0 0 1 0 1 1 0

X 0 X 1 1 1 1

Summary: In general, decoders and encoders transform N-bit binary numbers into
assertions of one of M outputs, and back. They change the how the value is
represented.

Steering Logic: Sometimes the goal is not to transform data but rather to move it
from one place to another. Wire, optical, and wireless channels do a good job of
transporting data. But sometimes logic is required to steer data into and out of
these channels. For example, we might want to connect multiple sensors that
collect information to multiple controllers that process the data. Rather than
connecting dedicated wires between each sensor and controller, we can multiplex
the data (in time) on a single wire.

S

S

S

S

C

C

C

C

S

S

S

S

C

C

C

CI0

I1

I2

I3

S1 S0

O0

O1

O2

O3

S1 S0

two bit
binary
select

two bit
binary
select

There are many uses for a digital block that can steer one of many inputs into an
output (a multiplexer). Steering a single input to one on many outputs (a
demultplexer) is also valuable. Let's explore their design.

08:44:30 PM 4 June 2013 BB-8 © Scott & Linda Wills

Two familiar gates, seen a new way: Before we start, let's revisit the functions
of our more fundamental gates. Imagine a block that can pass or block an input
signal depending on a control signal.

In Out

C

In C Out
X 0 0
A 1 A

If the control signal is high, the input is passed on to the output. If the control
signal is low, the output is masked. In binary, we only have two proper states: 0 and
1. So we'll define “masking” as setting to zero regardless of the input's value.

The implementation of this masking function can be seen by expanding the truth
table of its behavior. A masking gate is really an AND gate.

In Out

C

In C Out
0 0 0
1 0 0
0 1 0
1 1 1

Now imagine a block that can take two or more binary inputs where exactly one of
the inputs contains a value A, and all other inputs are zero. A four input version of
the function would like like this:

In0

OutIn1
In2
In3

In0 In1 In2 In3 Out
A 0 0 0 A
0 A 0 0 A
0 0 A 0 A
0 0 0 A A

Regardless of which input receives the single, if A is zero, so is the output. If A is
one, the output is one. This is the OR function since A + 0 = 0 + A = A. It serves as
a combining gate for a single value and many zeros.

Multiplexer: A multiplexer or mux steers one of many inputs to the output. The
input is selected by a binary number S. For example, a 4 to 1 mux uses a two bit
binary number to steer one of four inputs to the output. Here's its behavior.

08:44:30 PM 4 June 2013 BB-9 © Scott & Linda Wills

In0

OutIn1
In2
In3

S1 S0

4 to 1
Mux

In0 In1 In2 In3 S1 S0 Out
A B C D 0 0 A
A B C D 0 1 B
A B C D 1 0 C
A B C D 1 1 D

Note that the binary number represented by S1 and S0 controls which input value is
passed through to the output. The behavior can be realized using a 2 to 4 decoder
and the masking and combining gates described above.

In0

Out

In1

In2

In3

S1 S0

2 to 4
Decoder En

O0 O1 O2 O3

Each input is connected to a masking (AND) gate controlled by the corresponding
decoder output. So only the input decoded from the binary input S will be passed
through to the combining (OR) gate. All other inputs will be masked to zero. The
combining gate ignores zeros, outputting the one passed input.

This behavior can also be expressed as Boolean expressions.

Out= In0⋅S 1⋅S 0In1⋅S 1⋅S 0 In2⋅S 1⋅S 0In3⋅S 1⋅S 0

It can be implemented using AND and OR gates as shown below. Note that the four
input OR gate can be broken into a combination of two input ORs.

08:44:30 PM 4 June 2013 BB-10 © Scott & Linda Wills

Here S1 and S0 contain the value 01 (shown on the left). I1's high value (red) is
passed forward while all other masking gates are blocking inputs. The combining OR
gates then pass this value forward to the output. If S is changed to the value 11,
I3 becomes the signal that is steered to the output (shown on the right).

If the selected input happened to have a low value (I2, shown as blue on left), the
output would be zero. However if I2 changes to a high value, this change is also be
seen at the output (shown on right).

To reduce implementation cost, these AND and OR gates can be transformed to
NAND gates using mixed logic. If three and four input gates are available (they
are in VLSI), the implementation can be reduced to four 3-input NAND, one 4-
input NAND, and two inverters for a total of 24 + 8 + 4 = 26 transistors. because
of the inversions, this implementation is less easy to follow an input to the output.
But it still works!

08:44:31 PM 4 June 2013 BB-11 © Scott & Linda Wills

Demultiplexer: So what is the device that performs the reverse operation. A
demultiplexer or demux takes a single input and, under control of a binary number,
steers it to one of many outputs. The fundamental operation is easy to understand.

Out0

In Out1
Out2
Out3

S1 S0

1 to 4
Demux

In S1 S0 O0 O1 O2 O3
A 0 0 A
A 0 1 A
A 1 0 A
A 1 1 A

However deciding the status of unselected outputs (off-diagonal values)
dramatically affects the implementation and use of a demux. Suppose unselected
outputs are don't cared. After all, they're not selected. In this case, the
implementation can be extremely inexpensive!

In S1 S0 O0 O1 O2 O3
A 0 0 A X X X
A 0 1 X A X X
A 1 0 X X A X
A 1 1 X X X A

This is fanout. It is cheap and useful. Fanout is simply taking a value (in CMOS, a
value is a high or low voltage), and connecting it to multiple inputs. Since using an
input, or ignoring it does not affect the value, there is no obstacle to fanout (aside
from parasitic loading that affects the wire's speed). But it marginally deserves
the title “demux”.

08:44:32 PM 4 June 2013 BB-12 © Scott & Linda Wills

Unselected outputs can also be defined as zero. This could be useful since the
input value is ”masked” from unselected outputs. This is useful when multiple
components produce a signal that must travel on the same wire (not at the same
time). Unselected outputs can be combined with a signal (using an OR gate) without
affecting the OR gate's output. The OR identity states that X + 0 = X.

In S1 S0 O0 O1 O2 O3
A 0 0 A 0 0 0
A 0 1 0 A 0 0
A 1 0 0 0 A 0
A 1 1 0 0 0 A

Here the implementation is more complex and expensive; it costs 28 transistors
for the the one to four demux. This added cost is only required to prevent a
unselected output from interfering an OR gate combining many signals. There is a
better way...

Pass Gates: Just when you thought you'd seen every gate, another one comes along
… and this one is amazing! So far, all gates have been regenerative; they use input
signals to control switches that connect the output to either the high or low
voltage source. This is a good idea to insure signal integrity. But suppose we just
want to pass a signal through, or not. This would be far simpler and less expensive.
If only there was an ideal switch that could connect a high or low signal.
Unfortunately, P and N type switches can only do half the job. Let's use them both
to create a pass gate (also known as transmission gate or T-Gate).

A B

C

C

A B

C

C

08:44:32 PM 4 June 2013 BB-13 © Scott & Linda Wills

Two switches are connected at their switch points (source and drain) and opened
or closed together. With this construction, a P-type switch is available to pull high
while a N-type can pull low. With both switches closed, the signal level at A can be
high or low and the most capable switch is there to connect the signal to B.
Sometimes folks think that only one switch needs to be closed, depending on the
signal being passed. But by closing both switches together, it really doesn't matter
if the signal is high, low, or changing back ands forth!

Interestingly, this switch really doesn't have an input and an output. Instead it has
two terminals (A and B) that can be connected together when the control signal C
is high. When C is low, the terminals A and B are isolated. This component acts as
an “ideal switch” and its extremely useful. It's gate icon looks like two overlapping
buffers showing how signals can be passed bidirectionally. The control signals C and
C arrive that mid point of the two buffers. The bubble indicates the active low
control. Look carefully at the pass gate and its icon show side by side above. The
icon is on the left; the implementation (using one P-type switch and one N-type
switch) is on the right.

A Demux Using Pass Gates: We can use a couple of pass gates to create a demux
with a twist.

In S O0 O1
A 0 A Z0

A 1 Z0 A

Here the input value is passed to the selected output via a closed pass gate. The
cyan bar on the pass gate indicates the gate is closed; it is not part of the icon.
This output is like our previous demux implementations. However the unselected
output isn't zero, it isn't connected to anything, Its floating. This condition is
indicated in the truth table with the somewhat cryptic symbol Z0 which means high
impedance. But this is just a fancy way to say “floating”. Because its floating, it can
be connected to another signal with no risk of contention (and no OR gate
required). If we want more outputs on our demux, we can replicate this demux in a
binary tree.

08:44:32 PM 4 June 2013 BB-14 © Scott & Linda Wills

In S1 S0 O0 O1 O2 O3
A 0 0 A Z0 Z0 Z0

A 0 1 Z0 A Z0 Z0

A 1 0 Z0 Z0 A Z0

A 1 1 Z0 Z0 Z0 A

Here S1 is low so the input travels through the top pass gate. Since S0 is high, the
bottom pass gate of each 2 to 1 demux is closed. But only the uppermost 2 to 1
demux has an input to connect to the output. So all but the selected output, O1,
have floating outputs. O1 will follow In.

The function of this implementation is similar to the gate implementation. However,
this version has floating unselected outputs (a good thing) and a lower
implementation cost: 16 versus 28 switches (an even better thing).

A Mux Using Pass Gates: What's good for demuxes is also good for muxes. Here's
a 2 to 1 and a 4 to 1 implemented using pass gates.

These muxes also enjoys a low implementation cost (6 and 16 switches respectively)
and they behave exactly as the gate version. These implementations employ binary

08:44:33 PM 4 June 2013 BB-15 © Scott & Linda Wills

tree construction. To double the number of inputs, just replicate the current mux
and then add one more on the end. An 8 to 1 mux would stack two 4 to 1 muxes and
then add an extra 2 to 1 mux (controlled by S2) to choose between their outputs.
Using pass gates, muxes are as easy to build as demuxes … hey wait a minute.

Mirror Twins: Regarding the switch contacts, pass gates don't have inputs and
outputs like other gates. Either terminal can pull the other. So muxes and demuxs
built as binary trees of pass gates are the same thing, but for switching inputs and
outputs. In fact they are mirror images of each other.

Summary: Building blocks provide a new abstraction for digital design. What
decoders and muxes loss in the generality of gates, they gain in functionality. Its
important to remember that, while they have similar appearances, they accomplish
different objectives.

• Decoders and encoders perform translation between binary numbers and
less compact, but valuable presentations (e.g., selecting one of eight outputs
to be high).

• Muxes and demuxes are all about steering signals in and out of shared
channels. They can also select a value, or help multiple components share a
communications medium. They are controlled by a binary value. But they still
just connect an input to an output.

• Pass gates are the ideal switch we wish we had all along. It can pull high and
low. But it requires a control signal and its complement. It connect to wires.
Or it can leave then floating. An most amazingly, it provide bidirectional
connections for flexibility not achieved with other gates.

08:44:33 PM 4 June 2013 BB-16 © Scott & Linda Wills

