Microcode Programming

The datapath below incorporates an adder/subtractor, multiply/divider, and a one bit shifter. An arithmetic operation is specified by the $a d d / \overline{s u b}$ and mul/ $\overline{d i v}$ control lines. Subtraction is $(X-Y)$; division is (X / Y). The shift direction is controlled by the right $/ \overline{l e f t}$ control line. The enable signals determine which functional unit drives the Z bus. The datapath also contains a register file with four registers.

Write microcode for this datapath to compute the function below. The initial values of the registers should be used in the equation. Any register may be modified once its initial value has been used for the last time. Express all signals in octal notation (i.e., to select register two on the X bus, put a " 2 " in the X column).

$$
R_{0}=\frac{3 R_{0} R_{1}+9 R_{2}}{R_{0}-R_{3}}
$$

cycle	X	Y	Z	RWE	$a d d / \overline{s u b}$	+-en	mul/ $\overline{\text { div }}$	*/en	right/left	shiften
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

