Life in Quadania

In the far off planet Quadania, alien creatures are born with two fingers on each hand. Therefore, young quadanians grow up using quadal, a base four notation formed by the digits 0,1 , 2 , and 3 . This problem deals with exchanging numerical data with this advanced but unusual lifeform.

Part A Convert the following numbers between quadal and our more familiar notations.
\qquad
$31210_{4}=$ \qquad
$123.21_{4}=$ \qquad
$D A 91_{16}=$

$15.25_{8}=$ \qquad
$197_{10}=$ \qquad
$32.21_{4}=$ \qquad
$4^{13}=$ \qquad

Part B For each problem, (a) compute the operation using the rules of addition, expressing your answer in quadal notation, (b) indicate whether an error occurs assuming all numbers are expressed using a six bit, two's compliment representation, and (c) indicate whether an error occurs assuming all numbers are expressed using a six bit, unsigned binary representation. All number are expressed in quadal notation.

Part C The favorite soft drink in Quadania is Quadacola (jingle: "Always Quadacola!"). A Quadacola costs 16 cents using two coins: Quads (4 cents) and Octs (8 cents). Draw a state diagram with four states which represents the operation of a Quadacola machine. Inputs are active high "Quad" (Q) and "Oct" (O) signals. Quad and Oct signals cannot be high simultaneously. There is no "bad coin" input; quadanians are very honest. The active high outputs are "Reject" (R) and "Give Quadacola" $(G Q)$. Complete the state diagram below by adding all required transition arcs with input and output annotations.

