Combinational Design

Consider the expression:

$$
\text { Out }=(\overline{A B}+\bar{C} D) \overline{(E+\bar{F})}
$$

Part A Use a mixed logic methodology to implement this expression using 2-input NOR gates and inverters. Do not simplify the expression. Do not assume the compliments of the signals are available. Determine how many transistors are required.
number of transistors $=$ \qquad
Part B Repeat the previous part using only 2-input NAND gates and inverters.
number of transistors $=$ \qquad
Part C Use DeMorgan's Theorem to eliminate all compliment bars in the expression except for those over single input variables (\bar{A}, \bar{B}, etc.). Write the new expression.

Out $=$ \qquad
Part D Implement this new expression using transistor-level design. In this implementation, assume complimented inputs are available. How many transistors are required?

