Arithmetic Units

Part A Complete the truth table for a one bit binary full-adder.

X	Y	$C A R R Y_{\text {in }}$	SUM	CARRY out
0	0	0		
1	0	0		
0	1	0		
1	1	0		
0	0	1		
1	0	1		
0	1	1		
1	1	1		

Part B Implement a one bit binary full-adder using AND, OR, NAND, NOR, NOT, XOR, and XNOR gates. Label the inputs A, B, and $C A R R Y_{i n}$. Label the outputs $S U M$ and $C A R R Y_{\text {out }}$. Use mixed logic design methodology.

Part C The truth table for a one bit binary full-subtractor is given below. First determine the simplified expression for DIFFERENCE and BORROW ${ }_{\text {out }}$. Then implement this truth table using basic gates (AND, OR, NAND, NOR, NOT, XOR, and XNOR). Be sure to label the inputs $X, Y, B O R R O W_{i n}$, and the outputs DIFFERENCE, and BORROW $W_{\text {out }}$. Assume that you have the input signals and their complements.

X	Y	BORROW $_{\text {in }}$	DIFFERENCE	BORROW $_{\text {out }}$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0
0	0	1	1	1
1	0	1	0	0
0	1	1	0	1
1	1	1	1	1

DIFFERENCE = \qquad
BORROW ${ }_{\text {out }}=$ \qquad
Part \mathbf{D} Using a four bit adder, build a four bit adder/subtractors. Use AND, OR, NAND, NOR, NOT, XOR, and XNOR gates plus the adder drawn below. Label your inputs $X_{3}, X_{2}, X_{1}, X_{0}, Y_{3}, Y_{2}, Y_{1}, Y_{0}$, and $\overline{A d d} /$ Subtract. Label your outputs Z_{3}, Z_{2}, Z_{1}, and Z_{0}.

