Arithmetic Units

Part A Complete the truth table for a one bit binary full-adder.

	X	Y	$CARRY_{in}$	SUM	$CARRY_{out}$
	0	0	0		
-					
	1	0	0		
	0	1	0		
	1	1	0		
	0	0	1		
	1	0	1		
	0	1	1		
	1	1	1		

Part B Implement a one bit binary full-adder using AND, OR, NAND, NOR, NOT, XOR, and XNOR gates. Label the inputs A, B, and $CARRY_{in}$. Label the outputs SUM and $CARRY_{out}$. Use mixed logic design methodology.

Part C The truth table for a one bit binary full-subtractor is given below. First determine the simplified expression for DIFFERENCE and $BORROW_{out}$. Then implement this truth table using basic gates (AND, OR, NAND, NOR, NOT, XOR, and XNOR). Be sure to label the inputs $X, Y, BORROW_{in}$, and the outputs DIFFERENCE, and $BORROW_{out}$. Assume that you have the input signals and their complements.

X	Y	$BORROW_{in}$	DIFFERENCE	$BORROW_{out}$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0
0	0	1	1	1
1	0	1	0	0
0	1	1	0	1
1	1	1	1	1

$DIFFERENCE = _$

$BORROW_{out} =$

Part D Using a four bit adder, build a four bit adder/subtractors. Use AND, OR, NAND, NOR, NOT, XOR, and XNOR gates plus the adder drawn below. Label your inputs X_3 , X_2 , X_1 , X_0 , Y_3 , Y_2 , Y_1 , Y_0 , and $\overline{Add}/Subtract$. Label your outputs Z_3 , Z_2 , Z_1 , and Z_0 .

