Arithmetic

Part

Part A For each problem, (a) compute the operation using the rules of addition, and (b) indicate whether an overflow occurs. All numbers are expressed using a **six** bit, two's compliment representation in binary notation.

$1 \ 0 \ 1 \ 1 \qquad 0 \ 1 \ 0 \ 0 \ 0 \ 0 \qquad 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$
+ 1 1 1 0 + 1 1 1 1 1 1 + 1 1 0 1 0 1 + 0 0 0 0
overflow? overflow? overflow? overflow?
$1\ 1\ 0\ 1\ 1 \\ 0\ 1\ 0\ 1\ 0\ 0 \\ 1\ 1\ 1\ 0\ 1\ 1 \\ 1 \\ 1\ 1\ 0\ 1\ 1 \\ 1 \\ 1\ 1\ 0\ 1\ 1 \\ 1 \\ 1\ 1\ 0\ 1\ 1 \\ 1 \\ 1\ 1\ 0\ 1\ 1 \\ 1 \\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ $
$\underline{+\ 1\ 1\ 1\ 1} \ \underline{+\ 1\ 1\ 1\ 1\ 1} \ \underline{+\ 1\ 1\ 0\ 0\ 0\ 1}$
overflow? overflow? overflow?
1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0
$\underline{+1111} \ \underline{+001111} \ \underline{+111111}$
overflow? overflow? overflow?
B Now compute additions and detect overflows for these five bit, two's compliment numbers.
$1 \ 0 \ 1 \ 1$ $1 \ 0 \ 1 \ 0 \ 0$ $1 \ 0 \ 1 \ 0 \ 1$ $1 \ 1 \ 1 \ 1 \ 1$
+ 101 + 10101 + 10000
overflow? overflow? overflow? overflow?

Part C For each problem, (a) compute the operation using the rules of addition, (b) indicate whether an error occurs assuming all numbers are expressed using a **five** bit, two's compliment representation, and (c) indicate whether an error occurs assuming all numbers are expressed using a **five** bit, unsigned binary representation. All number are in binary notation.

$\begin{array}{c} 1 \ 1 \ 0 \ 1 \\ + \ 1 \ 1 \ 1 \end{array}$	$\begin{array}{r} 1 \ 0 \ 1 \ 1 \ 0 \\ + \ 1 \ 1 \ 0 \ 1 \ 1 \\ \end{array}$	$\begin{array}{r} 1 \ 1 \ 0 \ 1 \ 0 \\ + \ 1 \ 0 \ 1 \ 0 \ 1 \end{array}$	$\begin{array}{r} 1 \ 0 \ 1 \\ + \ 1 \ 0 \ 0 \ 1 \end{array}$
signed	signed	signed	signed
error?	error?	error?	error?
unsigned error?	unsigned	unsigned	unsigned
$\begin{array}{c} 1 \ 1 \ 1 \ 1 \ 1 \\ + \ 1 \ 1 \ 1 \ 1 \\ \end{array} \\ \begin{array}{c} + \ 1 \ 1 \ 1 \ 1 \\ \end{array}$	$\begin{array}{c}1 \ 1 \ 1 \ 1 \\ + \ 1 \ 1 \ 1 \ 1 \\ \end{array}$	$\frac{1\ 0\ 0\ 0\ 1}{+\ 1\ 1\ 1\ 1}$	$\begin{array}{c} 1 \ 0 \ 0 \ 0 \ 1 \\ + \ 1 \ 0 \ 0 \ 0 \ 0 \end{array}$
signed	signed	signed	signed
error?	error?	error?	error?
unsigned	unsigned	unsigned	unsigned
error?	error?	error?	error?

Part D For each problem, compute the subtraction by negating the second operand and then adding the binary operands. All numbers are expressed using a **six** bit, two's compliment representation in binary notation. Don't worry about overflows here.

	$0 \ 1$	1	0	0	1		0	1	0	1	1	0		0	1	1	1	1	1
_	0 0	1	1	1	1	-	0	1	0	1	0	1	_	0	1	1	1	1	1

Part E Now compute these subtractions (by negating the second operand and adding) for these **five** bit, two's compliment numbers. Again, don't worry about overflows.

$1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$
<u>-1100</u> <u>-101</u> <u>-10101</u> <u>-10011</u>
1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1
<u>-11111 -111 -10110 -10000</u>
1 1 1 0 1 1 1 0 1 1 1 1 0 0 1
<u>-11100</u> - <u>10</u> - <u>111</u> - <u>11001</u>

Part F Two eight bit two's compliment numbers are added together to form an eight bit two's compliment result. The inputs are named X7:X0 and Y7:Y0. The result is named Z7:Z0. Assume other circuitry (an eight bit adder) computes Z from X and Y. Your task is to design the logic that detects when an addition overflow (positive or negative) occurs using any bits from X, Y, and Z as **inputs**. Your overflow detector should have one output, OVERFLOW, that is high when an overflow is detected.