Arithmetic

Part A For each problem, (a) compute the operation using the rules of addition, and (b) indicate whether an overflow occurs. All numbers are expressed using a six bit, two's compliment representation in binary notation.

$$
\begin{array}{r}
1011 \\
+1110 \\
+111111 \\
\hline
\end{array}
$$

overflow? __ overflow? __ overflow? _ overflow? ___

$$
\begin{array}{r}
11011 \\
+1111 \\
+111111 \\
\hline
\end{array}
$$

overflow? | 1 | overflow? | overflow? |
| ---: | ---: | ---: |
| +1111 | 111000 | 110000 |
| +1111 | | |
| + | +1111111 | |

overflow? ___ overflow? ___ overflow? __

Part B Now compute additions and detect overflows for these five bit, two's compliment numbers.

$$
\begin{array}{r}
1011 \\
+10100 \\
+10101 \\
\hline
\end{array}
$$

overflow? \qquad overflow? \qquad overflow? \qquad overflow?

Part C For each problem, (a) compute the operation using the rules of addition, (b) indicate whether an error occurs assuming all numbers are expressed using a five bit, two's compliment representation, and (c) indicate whether an error occurs assuming all numbers are expressed using a five bit, unsigned binary representation. All number are in binary notation.

$$
\begin{array}{r}
1010110 \\
+111 \\
+11011 \\
\hline
\end{array}
$$

Part D For each problem, compute the subtraction by negating the second operand and then adding the binary operands. All numbers are expressed using a six bit, two's compliment representation in binary notation. Don't worry about overflows here.

$$
\begin{aligned}
& 011001 \quad 010110 \quad 011111 \\
& \underline{-001111-010101-011111}
\end{aligned}
$$

Part E Now compute these subtractions (by negating the second operand and adding) for these five bit, two's compliment numbers. Again, don't worry about overflows.

$$
\begin{array}{r}
10011010 \\
-1100 \\
-10101 \\
\hline
\end{array}
$$

$1110 \quad 101 \quad 10101 \quad 11111$
$-11111-111-10110-10000$

$$
\begin{array}{r}
1110 \\
-11100 \\
\hline
\end{array} \begin{array}{r}
11011 \\
\hline
\end{array}
$$

Part F Two eight bit two's compliment numbers are added together to form an eight bit two's compliment result. The inputs are named X7:X0 and Y7:Y0. The result is named Z7:Z0. Assume other circuitry (an eight bit adder) computes Z from X and Y . Your task is to design the logic that detects when an addition overflow (positive or negative) occurs using any bits from X, Y, and Z as inputs. Your overflow detector should have one output, OVERFLOW, that is high when an overflow is detected.

