## Cascading Counters

When cascading divide by N counters, it is necessary to modify the control of the $\overline{\text { Clear }}$ to prevent unwanted clears (e.g., $48,49,50,01,02$ in a divide by 60 counter.) Suppose a divide by N counter is built using a binary counter (cascaded toggle cells) described as follows:

| Count <br> Enable |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Clear | cycle | Out |  |  |
| X | 0 | $\uparrow \downarrow$ | 0 | clear |
| 0 | 1 | $\uparrow \downarrow$ | $Q_{o}$ | hold |
| 1 | 1 | $\uparrow \downarrow$ | $Q_{o}$ | count |

This problem addresses the design of logic that accepts as inputs:

$$
\begin{array}{ll}
\text { Count Enable } & \text { allows divide by N counter to count } \\
\text { External Clear } & \text { clears divide by N counter (active high) } \\
\text { Max.Count } & \text { indicating the maximum count }(N-1) \text { is currently output }
\end{array}
$$

The single output, $\overline{\text { Clear }}$, drives the binary counter clear signal.
Part A Complete the truth table below to describe the logic which prevents the unwanted clears mentioned above.

| External <br> Clear | Count <br> Enable | Max. <br> Count | $\overline{\text { Clear }}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | X |  |
| 0 | 1 | 0 |  |
| 0 | 1 | 1 |  |
| 1 | X | X |  |

Part B Now determine a simplified expression for $\overline{\text { Clear }}$ by completing the Karnaugh Map, circling the prime implicants, and writing a simplified expression.


Max. Count Max. Count Max. Count
$\overline{\text { Clear }}=$ $\qquad$
Part C Implement this simplified expression using a mixed logic design methodology. Be sure and label the inputs External Clear, Count Enable, and Max.Count, and the output, $\overline{\text { Clear }}$.

