Demultiplexers

Part A Implement a 1-to-2 demultiplexer (described in the truth table below) using basic gates. Be sure to label the inputs, $I N, C, O u t_{A}$, and $O u t_{B}$.

$I N$	C	Out $_{A}$	Out $_{B}$
0	0	0	0
1	0	1	0
0	1	0	0
1	1	0	1

Part B Now design a 1-to-4 demultiplexer, define in the truth table below, using 1-to-2 demultiplexers. Be sure to label the inputs, $I N, C_{0}, C_{1}, O u t_{A}, O u t_{B}, O u t_{C}$, and $O u t_{D}$. Use this icon for your one to two demultiplexer.

$I N$	C_{1}	C_{0}	Out $_{A}$	Out $_{B}$	Out $_{C}$	Out $_{D}$
0	0	0	0	0	0	0
1	0	0	1	0	0	0
0	0	1	0	0	0	0
1	0	1	0	1	0	0
0	1	0	0	0	0	0
1	1	0	0	0	1	0
0	1	1	0	0	0	0
1	1	1	0	0	0	1

