${\bf Encoders}$

Part A Complete the following truth table for a priority encoder.

IN_3	IN_2	IN_1	IN_0	OUT_1	OUT_0	Valid
1	0	0	0			
X	1	0	0			
X	X	1	0			
X	X	X	1			
0	0	0	0			

Part B Implement the following priority encoder using only basic gates.

IN_3	IN_2	IN_1	IN_0	OUT_1	OUT_0	Valid
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

 ${f Part}\ {f C}$ The following truth table describes the behavior of an encoder with an unusual priority. Based on the don't cares of the inputs, list the inputs from the highest priority to lowest.

IN_3	IN_2	IN_1	IN_0	OUT_1	OUT_0	Valid
0	0	0	0	X	X	0
\mathbf{X}	0	\mathbf{X}	1	0	0	1
0	0	1	0	0	1	1
\mathbf{X}	1	X	\mathbf{X}	1	0	1
1	0	X	0	1	1	1

highest 2nd highest 3rd highest lowest

Part D Implement the output OUT_1 for this priority encoder using basic gates.