Expression Simplification

Part A Complete the truth table for the following expression:
Out $=\bar{A} C D+\bar{A} \bar{B} \bar{D}+\bar{A} \bar{B} \bar{C} D+B C D+\bar{A} B C+A B C \bar{D}$

D	C	B	A	OUT
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	

D	C	B	A	$O U T$
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Part B For this expression, (A) express the minterm sum of products equation, and (B) express the maxterm product of sums equation.
(A) SOP (minterms) $=$ \qquad
(B) $\operatorname{POS}($ maxterms $)=$ \qquad

Part C Determine a simplified expression for the original expression above using a Karnaugh Map. Circle and list the prime implicants, indicating which are essential. Then write the simplified expression.

$O u t=$ \qquad

