Mixed Logic Design

Design a gate-level implementation for the following expression using the specified gate types. Use a mixed logic design methodology. All gates must either have all inputs bubbled or no inputs bubbled. Be sure that all bubbles are paired. Do not assume that the complement of inputs are available. Do not simplify the expressions. Also determine the number of transistors used by your design.

Part A Implement the following expression using 2-input NOR and NOT gates.

\[F_{(A,B,C,D,E)} = A(B + C) + DE \]

Part B Implement the following expression using 2-input NAND and NOT gates.

\[F_{(A,B,C,D,E)} = A(B + C) + DE \]

Part C Implement the following expression using 2-input NOR and NOT gates.

\[F_{(A,B,C,D,E)} = A + B + C + D + E \]
Part D Implement the following expression using NAND gates and inverters.

\[F_{(A,B,C,D,E)} = \overline{AB} + \overline{CD} + \overline{E} \]

Part E Implement the following expression using 2-input NAND gates and inverters.

\[F_{(A,B,C,D,E)} = \overline{A}(B + \overline{C(D + E)}) \]

Part F Implement the following expression using 2-input NAND gates and inverters.

\[Out = \overline{A}(B\overline{C} + \overline{D}(\overline{E} + \overline{F})) \]
Part G Implement the following expression using 2-input NOR gates and inverters.

\[\text{Out} = \overline{A(\overline{BC} + D(E + \overline{F}))} \]

Part H Implement the following expression using 2-input NOR gates and inverters.

\[F_{(A,B,C,D,E)} = \overline{(AB + C) + D} \]

Part I Implement the following expression using 2-input NOR gates and inverters.

\[F_{(A,B,C,D,E,F)} = \overline{(A + B + C) + D \cdot \overline{E} \cdot \overline{F}} \]