\qquad
Calculators not allowed. Show your work for any possible partial credit or in some cases for any credit at all (5 pages plus a diagram page , 100 possible points).

1) (30 points) Memory Systems

Using SIMMs (which are one type of memory chip) that are 2 MBytes (two million addresses by eight bit words):
Part A Suppose that these SIMMS are used to build a 8 million address memory system with 16 bit words. Answer the following questions about this memory system:
How many address lines does each SIMM require? \qquad
How many address lines does the entire memory system require? \qquad
How many SIMMS are require for the entire memory system? \qquad
What kind of address decoder is required? \qquad

How many memory banks are needed? \qquad
(Continued next page)

Continued from previous page: Now using however many of these SIMMs you need, draw this same memory system. In the drawing you make below, add as many SIMM chips as you need and then be sure you label the memory system inputs, Addr, R/W, and Mem Sel, and the system's outputs D0, D1, D2, etc. Also label bus widths, and inputs and outputs of any required decoders. Put a star on the chip(s) containing the memory location addressed by an address containing all ones (all of the address bits are input as a one).

Reminder on the problem on the previous page: Put a star on the chip(s) containing the memory location addressed by an address containing all ones (all of the address bits are input as a one).
2) (15 points) Suppose the following inputs (in hexadecimal) are applied to the 32-bit shift unit used in the single cycle data path shown in the diagram on the last page of the exam. Determine the output of the shift unit (in hexadecimal). You may assume the "su en" is a one to allow the shift unit to output a result.

Shift Type (st)	Input Value	Shift Amount (count)	Output
rotate	0xBA24FC61	0xFFFFFFDC	
arithmetic	0xC57324BD	0x00000030	
logical	0x55332211	0x0000000C	

Show your work here:
3) Using the datapath we have been discussing in class and shown on the last page of the exam (you may tear off that last page) write the microcode fragments to accomplish the following procedures. Use an " X " when a value is a don't care. You may assume register 0 contains all zeros. For full credit complete the description field. Less registers used and less steps in your answers earn more credit. Add more step \#s if you need more than is drawn below.
a) (10 points) Write a microinstruction to clear register 5 using only the logical unit.

$\#$	X	Y	Z	rwe	im en	im va	au en	-a/s	lu en	If	su en	st	st en	Id en	r/ ew	msel	description
1																	

b) (10 points) Write a microcode fragment (1 or more microinstructions) that writes the value that is in register 15 to memory location 0xOBDA. You may not need all the rows in the table. You may use other registers as needed.

$\#$	X	Y	Z	rwe	im en	im va	au en	$-\mathrm{a} / \mathrm{s}$	Iu en	If	su en	st	st en	Id en	r/ -w	msel	description
1																	
2																	
3																	
4																	
5																	

c) (20 points) Using only registers 1,2 , 3, and 4 compute the expression (note NOR means nor operation).
$\mathrm{M}[\mathrm{R} 4]=\underline{8 \cdot \mathrm{R}_{2}} \underline{+\left(\mathrm{R}_{3}\right.} \underset{4}{ } \underline{\left.\mathrm{NOR} \mathrm{R}_{1}\right)-5}$

$\#$	X	Y	Z	rwe	im en	im va	au en	-a/s	Iu en	If	su en	stst en	Id en	r/ -w	msel	description	
1																	
2																	
3																	
4																	
5																	
6																	

4) (15 Points) Draw the state diagram (circles connected by arcs with input/output on the arcs) and then the state table (input, present state, next state, output) for a sequence detector. Do not design the hardware, you are only showing the state diagram and the state table. The sequence detector has a single bit input and a single bit output. The sequence detector will detect two consecutive zeros and output a 1 when it sees two consecutive 0's. As an example first input is a 1 , second input is a 0 , third input is a 1 , fourth input is a 0 , fifth input is a $0 . .$. example inputs and more repeated here are : 101001000101001 your state machine outputs should be: 000010011000010

Hint: any time you are in the state where you just received a 0 as an input and then you receive another 0 , you should output a one.

