ECE2020 Test 1 Summer 2013 GTL

 May 31, 2013
 Name: ______

 5 pages, 100 possible points. Show your work for any possible partial credit.

Switch level circuits:

1) (15 total point) For the expression below, create a switch level implementation using N and P type switches. Assume both inputs and their complements are available. Your design should contain no shorts or floats. Implement the equations exactly as they are (no simplifying).

 $Out_x = (C + D) \cdot (E + F) \cdot \overline{A} \cdot B$

Switch-Ready Expressions:

2) (15 points) Transform each of the following Boolean expressions to a form where they are ready for switch level implementation (i.e., there should only be bars over input variables, not over operations). The behavior of the expression should remain unchanged. **Do not implement**, just show the new Boolean equation without any "big bars".

Outx = $(\overline{A + B})$ (C + D) $(\overline{E + F})$

3) Part A (15 points) Write the boolean output expression for the gate design shown below. Also determine the number of switches used in its implementation.

Out _____

number of switches _____

3) Part B (15 points) Implement the following expression using only two input OR gates and inverters so as to minimize the number of switches required. Then determine the number of switches required. **Use proper mixed logic notation**. Do not modify the expression, do not simplify the expression. Do not assume complements of inputs are available.

Out= $((\overline{A+B+C}) \cdot \overline{D} + \overline{EF}) \cdot G$

Number of switches _____

Karnaugh Maps:

4) (15 points) For the following expression, derive a simplified *sum of products* expression using a Karnaugh Map. Circle and list **ALL** the prime implicants, indicating which are essential.

$$A \cdot \overline{C} + A \cdot B \cdot \overline{C} + B \cdot \overline{D} + B \cdot C \cdot D$$

Simplified sum of products _____

5) (10 points) Determine the canonical product of sums (using maxterms) expressions for the truth table below:

А	В	С	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

POS (maxterms) = _____

6) (15 points) For the following expression, derive a simplified *product of sums* expression using a Karnaugh Map. Circle and list **ALL** the prime implicants, indicating which are essential.

out = (A+B+C) (A+
$$\overline{B}$$
+C) (A+B+ \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (\overline{A} + B+ \overline{C})

Simplified product of sums = _____