ECE2020 Test 1 Summer 2013 GTL
May 31, 2013
Name:
5 pages, 100 possible points. Show your work for any possible partial credit.
Switch level circuits:

1) (15 total point) For the expression below, create a switch level implementation using N and P type switches. Assume both inputs and their complements are available. Your design should contain no shorts or floats. Implement the equations exactly as they are (no simplifying).

Out $_{x}=(C+\bar{D}) \cdot(E+F) \cdot \bar{A} \cdot B$

Switch-Ready Expressions:
2) (15 points) Transform each of the following Boolean expressions to a form where they are ready for switch level implementation (i.e., there should only be bars over input variables, not over operations). The behavior of the expression should remain unchanged. Do not implement, just show the new Boolean equation without any "big bars".

Outx $=\overline{(A+B)}(C+D) \overline{(E+F)}$
3) Part A (15 points) Write the boolean output expression for the gate design shown below. Also determine the number of switches used in its implementation.

Out \qquad
number of switches \qquad
3) Part B (15 points) Implement the following expression using only two input OR gates and inverters so as to minimize the number of switches required. Then determine the number of switches required. Use proper mixed logic notation. Do not modify the expression, do not simplify the expression. Do not assume complements of inputs are available.

Out $=((\overline{A+B+C}) \cdot \bar{D}+\overline{E F}) \cdot \mathrm{G}$

Number of switches \qquad

Karnaugh Maps:
4) (15 points) For the following expression, derive a simplified sum of products expression using a Karnaugh Map. Circle and list ALL the prime implicants, indicating which are essential.
$A \cdot \bar{C}+A \cdot B \cdot \bar{C}+B \cdot \bar{D}+B \cdot C \cdot D$

Simplified sum of products \qquad
5) (10 points) Determine the canonical product of sums (using maxterms) expressions for the truth table below:

A	B	C	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$\operatorname{POS}($ maxterms $)=$ \qquad
6) (15 points) For the following expression, derive a simplified product of sums expression using a Karnaugh Map. Circle and list ALL the prime implicants, indicating which are essential.

$$
\text { out }=(\mathrm{A}+\mathrm{B}+\mathrm{C})(\mathrm{A}+\bar{B}+\mathrm{C})(\mathrm{A}+\mathrm{B}+\bar{C})(\bar{A}+\bar{B}+\bar{C})(\bar{A}+\mathrm{B}+\bar{C})
$$

Simplified product of sums $=$ \qquad

