This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions of the Honor Code.

Signed (With your Full Legal Name):

Instructions: Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work.

Good Luck!

Your Name (please print): \qquad

For maximum (and partial) credit, show your work.

Good Luck!

Combinational Building Blocks

Problem 1 (5 parts, 20 points)
Part A (8 points) Convert the following notations using the minimum required digits.

Binary Notation	Numbering System	Decimal
	Signed-magnitude	-42
10001	1's complement	
	2's complement	13
101110	2's complement	

Part B (6 points) For the binary representations below, determine the range (minimum to maximum values). Express all answers in decimal notation.

Representation	Minimum Value	Maximum Value
Unsigned integer (6 bits)		
1's complement (5 bits)		
2's complement (3 bits)		

Part C (2 points) In combinational logic circuits, the outputs are determined by both inputs and the current state (memory) of the system.
a) True
b) False

Part D (2 points) In pass (or transmission) gates, current follows a different path based on whether the input is high or low.
a) True
b) False

Part E (2 points) Which one of the following building blocks cannot be used to cascade (or tie multiple building blocks together to build multi-bit versions of the same function)?
a) Decoder
b) Priority Encoder
c) Demultiplexer
d) Half-adder

Problem 2 (2 parts, 20 points)

Do NOT change the order of the operands, show all work, and CIRCLE the final answer.
PART A (10 points) Show how $31+9$ is done in 6 -bit 2 's complement. Is your answer correct? EXPLAIN why or why not? Did an overflow occur?

Overflow? Y or N

PART B (10 points) Show how $15-28$ is done in 6 -bit 2's complement. Is your answer correct? EXPLAIN why or why not? Did an overflow occur?

Overflow? Y or N

Problem 3 (4 parts, 40 points)
Solve the following questions given the truth table below.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}	\mathbf{Y}
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

PART A (10 points) Design output \mathbf{X} using a single 3-to- 8 decoder (without an enable) and the minimum number of gates. You may use any logic gate with no limit on the number of gate inputs. Do not simplify.

PART B (10 points) How many transistors would you need to implement the circuit above? Assume that the decoder is implemented using canonical sum-of-products equations (no minimization), complemented inputs are provided inside the decoder, and logic gates have no limit on the number of gate inputs.

[^0]
Problem 3 Continued (4 parts, 40 points)

Solve the following questions given the truth table below.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}	\mathbf{Y}
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

PART C (10 points) Design output \mathbf{Y} using a single 8-to-1 multiplexer (without an enable) and the minimum number of gates. You may use any logic gate with no limit on the number of gate inputs. Do not simplify.

PART D (10 points) How many transistors would you need to implement the circuit above? Assume that the multiplexer is implemented using pass gates and complemented inputs are provided.
\# transistors, multiplexer = \qquad
\# transistors, total = \qquad

Problem 4 (3 parts, 20 points)
PART A (4 points) Consider a priority encoder with the following behavior:

$\mathbf{I}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	\mathbf{V}	$\mathbf{O}_{\mathbf{1}}$	$\mathbf{O}_{\mathbf{0}}$
0	0	0	0	0	X	X
X	X	X	1	1	0	0
0	0	1	0	1	0	1
X	1	X	0	1	1	0
1	0	X	0	1	1	1

What input priority has been assigned to the four inputs ($\mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{1}$, and $\left.\mathrm{I}_{0}\right)$?

PART B (6 points) Build an 8-bit magnitude comparator using the two 4 -bit building blocks below. You should label inputs ($\mathrm{A}_{0-7}, \mathrm{~B}_{0-7}, \mathrm{AEQB}_{\text {IN }}, \mathrm{ALTB}_{\text {IN }}$, and $\mathrm{AGTB}_{\text {IN }}$) and outputs (AEQBout, ALTBout, and AGTBout) as well as show connections between the chips.

ALTB $_{\text {IN }}$ $A E Q B_{\text {IN }}$	ALTB ${ }_{\text {OUT }}$ AEQBout
$A G T B{ }_{\text {IN }}$	AGTB OUt
A_{0}	
B_{0}	
A_{1}	4-bit comparator
B_{1}	
A_{2}	
B_{2}	
A_{3}	
B_{3}	

PART C (10 points) Use at least two types of building blocks (e.g., decoders, encoders, multiplexers, adders, comparators) and logic gates to design the 1-bit Mini Arithmetic Logic Unit (ALU) described below.

\mathbf{X}	\mathbf{Y}	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{0}}$	\mathbf{Z}
X	Y	0	0	$\mathrm{X}+\mathrm{Y}(\mathrm{OR})$
X	Y	0	1	$\mathrm{X} \cdot \mathrm{Y}$ (AND)
X	Y	1	0	$\mathrm{X}=\mathrm{Y}$ (Equal)
X	Y	1	1	$\mathrm{X}!=\mathrm{Y}($ Not Equal $)$

[^0]: \# transistors, decoder = \qquad
 \# transistors, total = \qquad

