Problem 1 (3 parts, 25 points)

Encoders and Decoders

Part A (6 points) Consider a priority encoder with the following behavior:

In_{2}	In_{1}	In_{0}	Valid	Out $_{1}$	Out $_{0}$
0	0	0	0	x	x
0	0	1	1	0	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	0	1

List the inputs $\left(\mathrm{In}_{0}, \mathrm{In}_{1}\right.$, and $\left.\mathrm{In}_{2}\right)$ in decreasing priority.

$$
\frac{\mathrm{In}_{1}}{\text { highest priority }}>\frac{\mathrm{In}_{0}}{\text { 2nd highest priority }}>\frac{\mathrm{In}_{2}}{\text { lowest priority }}
$$

Part B (12 points) Implement the priority encoder from part A using 2-input or 3-input NORs and inverters only.

$$
\begin{aligned}
& \text { Valid }=\mathrm{In}_{0}+\mathrm{In}_{1}+\mathrm{In}_{2} \\
& \text { Out }_{1}=\overline{\mathrm{In}}_{0} \mathrm{In}_{1} \\
& \text { Out }_{0}=\mathrm{In}_{1}
\end{aligned}
$$

Part C (7 points) Complete the circuit below to implement Out, whose behavior is shown in the truth table. Use only the decoder and one basic gate (e.g., AND, NAND, OR, NOR).

Problem 2 (3 parts, 30 points)
Part A (12 points) Convert the following notations:

binary notation	decimal notation
1101.011	13.375
1011111.1	95.5
011111101000	2024
hexadecimal notation	octal notation
0×440	2100
17.68	27.32
0×178	570

Part B (12 points) For the 24 bit representations below, determine the most positive value and the step size (difference between sequential values). Express all answers in decimal notation do not leave your answer as 2 raised to an exponent (e.g., say 4 K , not 2^{12}). Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (24 bits) . (0 bits)	$\mathbf{1 6 M}$	$\mathbf{1}$
signed fixed-point (18 bits) . (6 bits)	$\mathbf{1 2 8 K}$	$\mathbf{1 / 6 4}$
signed integer (24 bits) . (0 bits)	$\mathbf{8 M}$	$\mathbf{1}$
signed fixed-point (20 bits) . (4 bits)	$\mathbf{5 1 2 K}$	$\mathbf{1 / 1 6}$

Part C (6 points) What is the minimum number of bits needed to represent the following numbers in signed two's complement and as unsigned numbers?

Number:	Min \# bits for signed representation:	Min \# bits for unsigned representation:
-64	$\mathbf{7}$	N/A
1204	$\mathbf{1 2}$	$\mathbf{1 1}$
64	$\mathbf{8}$	$\mathbf{7}$

Problem 3 (3 parts, 30 points)
Part A (16 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned and five bit two's complement representations.

	10011	111	1100	10001
	+11001	$\begin{array}{r}\text { a } \\ +\quad 1010 \\ \hline\end{array}$	- 111	- 10011
result	01100	10001	00101	11110
unsigned error?	Yes	No	No	Yes
signed error?	Yes	Yes	No	No

Part B (8 points) For each bit string below, what is the decimal number it represents if it uses a 5 -bit unsigned representation and if it uses a 5-bit two's complement representation?

Bit string	Decimal (if unsigned representation)	Decimal (if 2's complement signed representation)
10110	$\mathbf{2 2}$	$\mathbf{- 1 0}$
101.11	5.75	$\mathbf{- 2 . 2 5}$

Part C (6 points) A 26 bit floating point representation has a 16 bit mantissa field, a 10 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?

What is the smallest value that can be represented (closest to zero)?

How many decimal significant figures are supported?

Problem 4 (2 parts, 15 points)
Consider the following circuit.

Building Blocks and Pass Gates

\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{Y}
0	0	$\mathbf{0}$	$\mathbf{0}$
0	1	$\mathbf{0}$	$\mathbf{0}$
1	0	$\mathbf{1}$	$\mathbf{0}$
1	1	$\mathbf{0}$	$\mathbf{1}$

Part A (8 points) Fill in the truth table to the right with its behavior.
Part B (7 points) What building block does this circuit implement? Express your answer in the form of n-to-m <type of building block> (e.g, 16-to-1 mux).

1-to-2 decoder

