Problem 1 (4 parts, 21 points)
Encoders and Pass Gates
Part A (8 points) Suppose the circuit below has the following input priority: $I_{1}>I_{3}>I_{0}>I_{2}$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_{1}.

I_{3}	I_{2}	I_{1}	I_{0}	V	O_{1}	O_{0}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	X	X
$\mathbf{0}$	X	$\mathbf{0}$	$\mathbf{1}$	1	0	0
\mathbf{X}	X	$\mathbf{1}$	X	1	0	1
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	1	0
$\mathbf{1}$	X	$\mathbf{0}$	X	1	1	1

$$
O_{1}=\quad \overline{I_{1}}\left(\overline{I_{0}}+I_{3}\right)
$$

Part B (3 points) Consider a priority encoder with the following behavior:

In_{2}	In_{1}	In_{0}	Valid	Out $_{1}$	Out $_{0}$
0	0	0	0	x	x
0	0	1	1	0	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	0	1

List the inputs $\left(\mathrm{In}_{0}, \mathrm{In}_{1}\right.$, and $\left.\mathrm{In}_{2}\right)$ in decreasing priority.

Part C (6 points) Implement a 2-input XOR gate with pass gates and inverters only. (Hint: remember that a 2 -input XOR is a selective inverter.)

Part D (4 points) Does your implementation of an XOR in Part C require fewer transistors than the gate's standard switch-level implementation? Circle one: Yes
Support your answer by giving the transistor count for each:

Problem 2 (3 parts, 24 points)
Part A (10 points) Convert the following notations:

binary notation	decimal notation
01011101.1	93.5
110100.01	52.25
1100110.101	102.625
hexadecimal notation	octal notation
$0 \times 12 \mathrm{~B} .54$	453.25
$0 \times$ B357.6C	131527.33

Part B (8 points) For the 26 bit representations below, determine the most positive value and the step size (difference between sequential values). Express all answers in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (26 bits) . (0 bits)	$\mathbf{2}^{\mathbf{2 6}}=\mathbf{6 4 M}$	$\mathbf{1}$
signed fixed-point (19 bits) . (7 bits)	$\mathbf{2}^{18}=\mathbf{2 5 6 K}$	$\mathbf{1 / 1 2 8}$
signed integer (26 bits) . 0 bits)	$\mathbf{2}^{25}=\mathbf{3 2 M}$	$\mathbf{1}$
signed fixed-point $(23$ bits) . (3 bits)	$\mathbf{2}^{\mathbf{2 2}}=\mathbf{4 M}$	$\mathbf{1 / 8}$

Part C (6 points) A 20 bit floating point representation has a 12 bit mantissa field, a 7 bit exponent field, and one sign bit.
What is the largest value that can be represented (closest to infinity)?
What is the smallest value that can be represented (closest to zero)?
-64
2
How many decimal significant figures are supported?

Problem 3 (3 parts, 30 points)
Computation
Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned and six bit two's complement representations.

	$\begin{array}{r} 100101 \\ +\quad 101011 \\ \hline \end{array}$	$\begin{array}{r} 10101 \\ +\quad 101100 \\ \hline \end{array}$	$\begin{array}{r} 110111 \\ -\quad 011001 \\ \hline \end{array}$	$\begin{array}{r} 11100 \\ -\quad 10100 \\ \hline \end{array}$
result	010000	000001	011110	01000
unsigned error?	Yes	Yes	No	No
signed	Yes	No	Yes	No

Part B (8 points) For each bit string below, what is the decimal number it represents if it uses a 5-bit unsigned representation and if it uses a 5-bit two's complement representation?

Bit string	Decimal (if unsigned representation)	Decimal (if 2's complement signed representation)
01101	13	+13
11110	30	-2
1111.1	15.5	-0.5
011.11	3.75	+3.75

Part C (10 points) Consider the circuit below. Complete the truth table by filling in the empty boxes. (Note that there may be multiple possible inputs that can result in a given output; you need to show only one.) Finally, state what condition this circuit tests on the two input words \mathbf{A} and \mathbf{B} (which are each 3-bit words: $A_{2} A_{1} A_{0}$ and $B_{2} B_{1} B_{0}$).

This circuit's Out signal is high if \mathbf{A} equals B.

Problem 4 (4 parts, 25 points)
Decoding
Suppose you are implementing a seven segment display as shown below. Input decimal numbers are represented as unsigned binary numbers DCBA (e.g., $0101=5$, which is displayed by lighting segments $\mathbf{a}, \mathbf{c}, \mathbf{d}, \mathbf{f}$, and \mathbf{g}). In this problem, unlike the Homework 2 problem, assume that for input decimal numbers greater than 9, the 7-segment display is blank (no segments are lit up).

BCD to 7 Segment
Decoder

7 Segment
LED Display

Part A (4 points) Complete the BCD to 7-segment decoder truth table below by filling in the Decoder Output column for a.

Binary Inputs								Decoder Outputs								7-Segment Display Outputs
\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}						
0	0	0	0	$\mathbf{1}$	1	1	1	1	1	0	0					
0	0	0	1	$\mathbf{0}$	1	1	0	0	0	0	1					
0	0	1	0	$\mathbf{1}$	1	0	1	1	0	1	2					
0	0	1	1	$\mathbf{1}$	1	1	1	0	0	1	3					
0	1	0	0	$\mathbf{0}$	1	1	0	0	1	1	4					
0	1	0	1	$\mathbf{1}$	0	1	1	0	1	1	5					
0	1	1	0	$\mathbf{1}$	0	1	1	1	1	1	6					
0	1	1	1	$\mathbf{1}$	1	1	0	0	0	0	7					
1	0	0	0	$\mathbf{1}$	1	1	1	1	1	1	8					
1	0	0	1	$\mathbf{1}$	1	1	1	0	1	1	9					
1	0	1	x	0	0	0	0	0	0	0	no segments turned on					
1	1	x	x	0	0	0	0	0	0	0	no segments turned on					

Part B (6 points) Write the standard sum of products form of Decoder Output e.
$\mathbf{e}=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \cdot C \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D$
Part C (6 points) For which decimal numbers is the following expression true? Assume each decimal number is represented as an unsigned binary number DCBA.

$$
W=\bar{D}+\bar{B} \cdot \bar{C}
$$

Decimal numbers: \qquad 9

Part D (9 points) Implement Decoder Output e using a single 4-to-16 decoder (with an enable) and a single OR gate. The OR gate may have any number of inputs that you need. Label all input and output signals on the decoder. Assume you are given the inputs A, B, C, D, and the input $W=\bar{D}+\bar{B} \cdot \bar{C}$ (which is provided by another circuit that you do not need to implement).

