Problem 1 (4 parts, 22 points)
Part A (6 points) Implement a 2 to 4 decoder with basic gates.

Part B (8 points) Suppose the circuit below has the following input priority: $I_{0}>I_{2}>I_{3}>I_{1}$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_{1}.

$$
O_{1}=\underline{I_{0}} \cdot\left(I_{2}+I_{3}\right)
$$

Part C (4 points) Which basic gate, having inputs X and Y , does the following circuit implement? Hint:

Complete the truth table at the right.

x	y	Out
0	0	1
0	1	0
1	0	0
1	1	0

This implements a NOR
Part D (4 points) If the mux in Part C is implemented with pass gates and inverters, does the implementation of the basic gate in Part C require fewer transistors than the gate's standard switch-level implementation?

Circle one: No
Support your answer by giving the transistor count for each:

Problem 2 (3 parts, 24 points)
Part A (10 points) Convert the following notations:

binary notation	decimal notation
11000101.	197
10101.101	21.625
11001.011	25.375
hexadecimal notation	octal notation
0×1 EC.58	754.26
D5.A	325.5

Part B (8 points) For the 12 bit representations below, determine the most positive value and the step size (difference between sequential values). Express all answers in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (12 bits) . (0 bits)	$4 K-1=4095$	1
signed fixed-point (7 bits) . (5 bits)	64-1/32	1/32
signed integer (12 bits) . (0 bits)	$2 K-1=2047$	1
signed fixed-point (9 bits) . (3 bits)	256-1/8	1/8

Part C (6 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?
What is the smallest value that can be represented (closest to zero)?
How many decimal significant figures are supported?

$2 \ldots$
3 \qquad

Problem 3 (3 parts, 28 points)
Adding \& Subtracting
Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned and six bit two's complement representations.

	101010	11011	111000	101000
	$\begin{array}{r}11000 \\ \hline\end{array}$	1010 $+\quad 1010$	- 110110	- 1011
result	000010	100101	000010	011101
unsigned error?	yes	no	no	no
signed error?	no	yes	no	yes

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S . Add extra digital logic to support subtraction as well as addition. Label inputs $\mathrm{X}_{3}, \mathrm{X}_{2}$, $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}, \overline{A D D} /$ SUB and outputs $\mathrm{Z}_{3}, \mathrm{Z}_{2}, \mathrm{Z}_{1}, \mathrm{Z}_{0}$.

Part C (6 points) Write two Boolean expressions indicating signed two's complement addition and subtraction overflow using any of the signals labeled in part B that are necessary. These expressions should be true when overflow occurs.

$$
\begin{aligned}
\quad \text { addition overflow } & =X_{3} \cdot Y_{3} \cdot \overline{Z_{3}}+\overline{X_{3}} \cdot \overline{Y_{3}} \cdot Z_{3}
\end{aligned} \text { or } \quad A_{3} \cdot B_{3} \cdot \overline{Z_{3}}+\overline{A_{3}} \cdot \overline{B_{3}} \cdot Z_{3}
$$

Part D (4 points) Write two Boolean expressions indicating unsigned addition and subtraction overflow using any of the signals labeled in part B that are necessary. These expressions should be true when overflow occurs.

$$
\begin{aligned}
\text { addition overflow } & =\frac{C_{\text {out }}}{\overline{C_{\text {out }}}} \\
\text { subtraction overflow } &
\end{aligned}
$$

Part A (8 points) Implement a transparent latch using only NOR gates, AND gates, and inverters. Label the inputs In and En, and output Out. Do not attempt to employ mixed logic notation. Also complete the truth table.

Part B (7 points) Assume the following signals are applied to a transparent latch. Draw the output signal Out. Assume Out is initially zero.

Part C (4 points) Consider a register with a selectable write enable (WE) and read enable (RE), implemented as shown below. Describe its behavior by completing the output values. Recall that the CLK signal indicates a full $\Phi_{1} \Phi_{2}$ cycle; so the output should be the value at the end of a cycle (with the given inputs). Also indicate when a write and/or a read is being performed.

Part D (7 points) Assume the following signals are applied to a register with write enable. Draw the output signal Out. Draw a vertical line where In is sampled. Assume Out is initially zero.

