
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

Computer Engineering

Spring 2012

4 problems, 6 pages

Exam Three

12 April 2012

Problem 1	(3	parts.	30	points'	Ì
I I C C I C I I I	(-	parts,		POILIED	,

Memory Systems

Part A (12 points) Consider a **1 Gbit** DRAM chip organized as **32 million addresses** of **32-bit words**. Assume both the DRAM cell and the DRAM chip are square. The column number and offset concatenate to form the memory address. Using the organization approach discussed in class, answer the following questions about the chip. *Express all answers in decimal (not powers of two)*.

total number of bits in address	
number of columns	
column decoder required $(n \text{ to } m)$	
number of words per column	
type of mux required $(n \text{ to } m)$	
number of address lines in column offse	et
Part B (10 points) Consider an 8 Gbyte med 32 million address by 32-bit word memory	mory system with 1 billion addresses of 64-bit words using DRAM chip.
word address lines for memory system _	
chips needed in one bank	
banks for memory system	
memory decoder required $(n \text{ to } m)$	
DRAM chips required	

Part C (8 points) Design a **16 million address by 4 bit** memory system with **4 million x 4** memory chips. *Label all busses and indicate bit width*. Assume R/W is connected and not shown here. Use a bank decoder if necessary. Be sure to include the address bus, data bus, and MSEL.

12 April 2012

Problem 2 (3 parts, 26 points)

Datapath Elements

Part A (6 points) Suppose the following inputs (in hexadecimal) are applied to the 32-bit barrel shifter used in the datapath. Determine the output (in hexadecimal). Assume the shift amount is drawn from the 16-bit immediate value.

Shift Type	Shift Amount	Input Value	Output Value
arithmetic	0x0008	ABCD12EF	
rotate	0xFFF4	DEAF7892	
arithmetic	0xFFF0	FACE2537	

Part B (8 points) For each bitwise logical function specification below, determine the LF code (in hexadecimal) to correctly program the logical unit.

ΧΥ	Out
0 0	LF ₀
1 0	LF ₁
0 1	LF ₂
1 1	LF ₃

logical function	LF
Y + X	
X	
$X \oplus Y$	
$X \cdot Y$	

Part C (12 points) Given the following state table, draw the corresponding state diagram below.

	<u> </u>								<u>. </u>		
S_1	S_0	H/M	NS_1	NS_0	Out	S_1	S_0	H/M	NS_1	NS ₀	Out
0	0	0	0	1	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	1	0	0	0
0	1	0	1	0	0	1	1	0	x	x	x
0	1	1	0	0	0	1	1	1	x	x	x

Give	the simi	nlified	Roolean	expression 1	for com	nutino	NS.	in terms	of the	current	state a	nd the	∍ inr	nit
OIVC	the sim	Dillica	Doorcan	CADICSSIUII	IOI COIII	Duung	1101	111 (C11113	or the	Current	state a	na un	. III	Jui.

Exam Three

12 April 2012

Problem 3 (3 parts, 26 points)

Microcode

Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values, except memory addresses, in hexadecimal notation. Use 'X' when a value is don't cared. For maximum credit, complete the description field. In each part, modify only registers 7 & 8.

Part A (5 points)

 $R_7 = (R_8 - 12)/128$

#	X	Y	Z	rwe	im en	im va	au en	$\frac{s}{a}$	lu en	lf	su en	st	ld en	st en	$\frac{r/}{w}$	msel	description
1																	
2																	
3																	

Part B (15 points) Compute the logical OR of mem[4000] and R_3 and store the result in

mem[4004] (that is mem[4004] gets mem[4000]+R₂ where "+" is "logical or")

IIIC	ոոլ-	1005	ք] (ե	11at 15	, mc	111[4004	· j gci	2 111	տոլե	1000	/] IX3	, wı	ICIC	' 1	5 10	gicai	01).
#	X	Y	Z	rwe	im	im va	аи	<u>s/</u>	lu	lf	su	st	ld	st	<u>r/</u>	msel	description
					en		en	а	en		en		en	en	W		
1																	
2																	
3																	
4																	
4																	
5																	
ا																	
6																	

Part C (6 points)

 $R_7 = 15 \cdot R_8$ (multiply R₈ by 15)

#	X	Y	Z	rwe	im	im va	аи	<u>s</u> /	lu	lf	su	st	ld	st	<u>r/</u>	msel	description
					en		en	а	en		en		en	en	w		
1																	
2																	
3																	
4																	

Spring 2012

4 problems, 6 pages

Exam Three

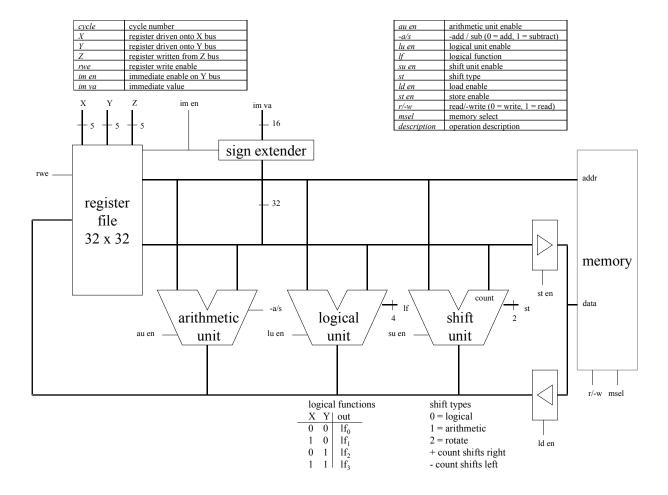
12 April 2012

Problem 4 (2 parts, 18 points)

Counters

Part A (8 points) Design a toggle cell using *only transparent latches and basic gates (XOR, AND, OR, NAND, NOR, NOT)*. Use an icon for the transparent latches. Your toggle cell should have an active high toggle enable input **TE**, and an active low clear input \overline{CLR} , clock inputs Φ_1 and Φ_2 , and an output **Out**. The \overline{CLR} signal has precedence over **TE**. Label all signals. Also complete the behavior table for the toggle cell.

TE	\overline{CLR}	CLK	Out
0	0	$\uparrow\downarrow$	
1	0	$\uparrow \downarrow$	
0	1	$\uparrow\downarrow$	
1	1	$\uparrow\downarrow$	


Part B (10 points) Now combine these toggle cells to build a **divide by thirteen** counter. Your counter should have an external clear, external count enable, and four count outputs O₃, O₂, O₁, O₀. Use any basic gates (AND, OR, NAND, NOR, XOR & NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design must support multi-digit systems.

Ext CE —	TE Out CLR	- O ₀
	TE Out CLR	- O ₁
	TE Out CLR	- O ₂
Ext CLR —	TE Out CLR	- O ₃

4 problems, 6 pages

Exam Three

12 April 2012

