
ECE 2030D	Computer Engineering	Spring 2012
4 problems, 5 pages	Exam Two	8 March 2012

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

ECE 2030D	Computer Engineering	Spring 2012
4 problems, 5 pages	Exam Two	8 March 2012
Problem 1 (4 parts, 22 points)		Building Blocks
Part A (6 points) Implement a	2 to 4 decoder with basic gates.	
I_0 ——		$ O_0$
I_1 —		O_1
		-
EN —		O_2
		O_3

Part B (8 points) Suppose the circuit below has the following input priority: $I_0 > I_2 > I_3 > I_1$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_1 .

	I_3	I_2	I_1	I ₀	V	O_1	<i>O</i> ₀
4 .					0	Х	Х
$-10 \overrightarrow{5}$ $-11 \approx 00$					1	0	0
					1	0	1
$ \begin{array}{c} -I_{0} \stackrel{4}{} \\ +I_{0} \\ -I_{1} \\ +I_{2} \\ -I_{2} \\ -I_{3} \\ -I_{3} \\ \end{array} $					1	1	0
					1	1	1

*O*₁ = _____

Part C (4 points) Which basic gate, having inputs X and Y, does the following circuit implement? Hint: Complete the truth table at the right. L

1 - 10		Х	У	Out
1 10 Mux 0 11		0	0	
0 — 11 0 — 12 Out	— Out	0	1	
0 — 13 S0 S1		1	0	
X Y		1	1	

This implements a ______.

Part D (4 points) If the mux in Part C is implemented with pass gates and inverters, does the implementation of the basic gate in Part C require fewer transistors than the gate's standard switch-level implementation?

Circle one: Yes / No

Support your answer by giving the transistor count for each:

transistors in MUX implementation: # transistors in switch-level implementation:

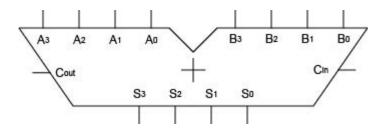
ECE 2030D	Computer Engineering	Spring 2012
4 problems, 5 pages	Exam Two	8 March 2012
Problem 2 (3 parts, 24 points)		Number Systems

Part A (10 points) Convert the following notations:

binary notation	decimal notation	
1100 0101.		
	21.625	
1 1001.011		
hexadecimal notation	octal notation	
	754.26	
D5.A		

Part B (8 points) For the 12 bit representations below, determine the most positive value and the step size (difference between sequential values). **Express all answers in decimal notation**. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer		
(12 bits) . (0 bits) signed fixed-point		
(7 bits) . (5 bits)		
signed integer		
(12 bits) . (0 bits)		
signed fixed-point (9 bits). (3 bits)		


Part C (6 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2
What is the smallest value that can be represented (closest to zero)?	2

How many decimal significant figures are supported?

ECE 2030D		Computer Engin	Spring 2012	
4 problems, 5 pag	es	Exam Two)	8 March 2012
Problem 3 (3 parts	s, 28 points)			Adding & Subtracting
and indicate wheth	ner an overflow		1 numbers are ex	g the rules of arithmetic, pressed using a six bit
5	101010	11011	111000	101000
	+ 11000	+ 1010	- 110110	<u>- 1011</u>
result				
unsigned				
error?				
signed				
error?				

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S. Add extra digital logic to support subtraction as well as addition. Label inputs X_3 , X_2 , X_1 , X_0 , Y_3 , Y_2 , Y_1 , Y_0 , \overline{ADD} / SUB and outputs Z_3 , Z_2 , Z_1 , Z_0 .

Part C (6 points) Write two Boolean expressions indicating *signed two's complement* addition and subtraction overflow using any of the signals labeled in part B that are necessary. These expressions should be true when overflow occurs.

addition overflow =

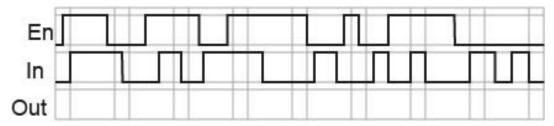
subtraction overflow =

Part D (4 points) Write two Boolean expressions indicating *unsigned* addition and subtraction overflow using any of the signals labeled in part B that are necessary. These expressions should be true when overflow occurs.

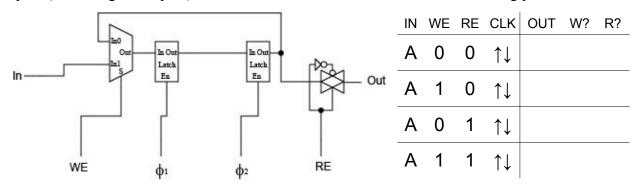
addition overflow =

subtraction overflow =

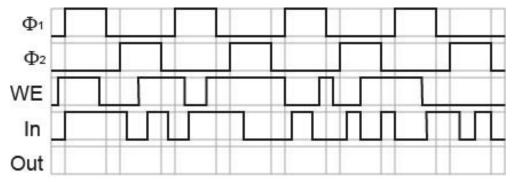
ECE 2030D	Computer Engineering	Spring 2012
4 problems, 5 pages	Exam Two	8 March 2012


Problem 4 (4 parts, 26 points)

Registers and Latches


Part A (8 points) Implement a transparent latch using only NOR gates, AND gates, and inverters. Label the inputs **In** and **En**, and output **Out**. Do not attempt to employ mixed logic notation. Also complete the truth table.

_	In	En	Out
	Α	0	
	Α	1	


Part B (7 points) Assume the following signals are applied to a transparent latch. Draw the output signal **Out**. Assume **Out** is initially zero.

Part C (4 points) Consider a register with a selectable *write enable* (WE) and *read enable* (RE), implemented as shown below. Describe its behavior by completing the output values. Recall that the CLK signal indicates a full $\Phi_1 \Phi_2$ cycle; so the output should be the value at the end of a cycle (with the given inputs). Also indicate when a write and/or a read is being performed.

Part D (7 points) Assume the following signals are applied to a register with write enable. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Assume Out* is *initially zero*.

