Problem 1 (3 parts, 31 points)
Part A (13 points) Convert the following notations:

binary notation	decimal notation
111001001.1001	457.5625
111110001	497
11001.11	25.75
binary notation	hexadecimal notation
10110100101.01011010101	$5 A 5.5 A A$
1100101000010001.110010101011	CA11.CAB

Part B (12 points) For the 25 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned fixed-point $(20$ bits $) .(5$ bits $)$	1 M	$1 / 32$
signed integer $(25$ bits $) .(0$ bits $)$	16 M	1
signed fixed-point $(13$ bits) $)(12$ bits $)$	4 K	$1 / 4 \mathrm{~K}$
signed fixed-point $(9$ bits $) .(16$ bits $)$	256	$1 / 64 \mathrm{~K}$

Part C (6 points) A 25 bit floating point representation has a 17 bit mantissa field, a 7 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)? 2^{63}

What is the smallest value that can be represented (closest to zero)?
2^{-64}
How many decimal significant figures are supported?

Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

	11.1	1101.1	0.0	1010.1
	+ 111.1	+ 1100.1	-1000.1	- 101.0
result	1011.0	1010.0	0111.1	101.1
gned error?	- no	- no Mes	- no - yes	- ${ }^{\text {no }}$
signed error?	,	-no ayes		口no

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S . Add extra digital logic to support subtraction as well as addition. Label inputs $\mathrm{X}_{3}, \mathrm{X}_{2}$, $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}, \overline{A D D} /$ SUB and outputs $\mathrm{Z}_{3}, \mathrm{Z}_{2}, \mathrm{Z}_{1}, \mathrm{Z}_{0}$.

Part C (6 points) Write two Boolean expressions indicating signed two's complement addition and subtraction overflow using inputs $\mathrm{X}_{3}, \mathrm{Y}_{3}, \mathrm{Z}_{3}$. These SOP expressions should be true when overflow occurs.

$$
\begin{aligned}
\text { addition overflow }= & X_{3} \mathrm{Y}_{3} \bar{Z}_{3}+\bar{X}_{3} \overline{\mathrm{Y}}_{3} \mathrm{Z}_{3} \\
\text { subtraction overflow }= & \mathrm{X}_{3} \overline{\mathrm{Y}}_{3} \overline{\mathrm{Z}}_{3}+\bar{X}_{3} \mathrm{Y}_{3} \mathrm{Z}_{3}
\end{aligned}
$$

IN	EN	OUT	$\overline{\text { OUT }}$
A	0	Q $_{0}$	\bar{Q}_{0}
A	1	A	\bar{A}

Part B (8 points) Implement a one bit register with write enable using only the components drawn below. Label inputs In, write enable WE, clocks $\boldsymbol{\phi}_{\mathbf{1}}$, and $\boldsymbol{\phi}_{2}$, and output Out.

Part C (6 points) Assume the following signals are applied to a register. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Draw crosshatch where Out is unknown.

Problem 4 (3 parts, 21 points)
"A chip off the old block"
Part A (15 points) Consider the five definitions for the block drawn below. One block input is the logical value A. The other input is the control value C. The output behavior for each of the five definitions is given in the table. Complete the full truth table and state the logical (gate) names for each definition. (hint: the first block one appears to mask \boldsymbol{A} when its control input is low.)

| In Out
 C |
| :---: |$-$| In | C | (1) | (2) | (3) | (4) | (5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | A | \bar{A} | A | Z_{0} |
| A | 1 | A | \bar{A} | 0 | 1 | A |

In	C	(1)	(2)	(3)	(4)	(5)
0	0	0	0	1	0	Z_{0}
1	0	0	1	0	1	Z_{0}
0	1	0	1	0	1	0
1	1	1	0	0	1	1

(1)	AND	(2)	XOR	(3)	NOR
(4)	OR	(5)	Pass Gate		

Part B (6 points) The circuit below is built using these blocks. Describe its behavior. Also give the circuits common name.

X	y	Out	
0	0	Q_{0}	
1	0	Q_{0}	It's a
0	1	0	
1	1	1	

\qquad

