
ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Instructions: This is a closed book, closed note exam. Calculators and other electronics are not
permitted. If you have a question, raise your hand and I will come to you. Please work the exam
in pencil and do not separate the pages of the exam. For maximum credit, show your work.
Good Luck!

Your Name (please print) __

1 2 3 4 5 total

21 32 34 38 30 155

1

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Problem 1 (3 parts, 21 points) “A chip off the old block”

Part A (15 points) Consider the five definitions for the block drawn below. One block input is the
logical value A. The other input is the control value C. The output behavior for each of the five
definitions is given in the table. Complete the full truth table and state the logical (gate) names
for each definition. (hint: the first block one appears to mask A when its control input is low.)

INA

C

Out In C i
A 0 0 A A A Zo

A 1 A A 0 1 A

In C i
0 0

1 0

0 1

1 1

i

Part B (6 points) The circuit below is built using these blocks. Describe its behavior. Also give
the circuits common name.

X

Y

i

OutIN

C
O

IN

C
OIN

C
O

IN

C
O IN

C
O

i

X Y Out

0 0

1 0

0 1

1 1

It's a

2

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Problem 2 (4 parts, 32 points) Design Fun
Complete each design below. Be sure to label all signals.

Part A: Complete the following CMOS design. Also
express its behavior.

Out =

Part B: Derive the proper mixed logic expression for the
following design. Determine # of switches needed.

Out =

switches =

Part C: Implement a toggle cell using required latches
and basics gates (including XORs). Also complete the
behavior table.

TE CLR CLK Out

↑↓

↑↓

↑↓

Part D: Draw the state table for the following state
diagram.

00 01

10

/ /

/

A/

A/ A/B

11

/

A/

A S1 S0 NS1 NS0 B

0 0 0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

3

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Problem 3 (3 parts, 34 points) Memory and Maps
Part A (12 points) Consider a gigabit DRAM chip organized as 64 million addresses of 16 bit
words. Assume both the DRAM cell and the DRAM chip is square. The column number and
offset concatenate to form the memory address. Using the organization approach discussed in
class, answer the following questions about the chip. Express all answers in decimal.

number of columns

column decoder required (n to m)

type of mux required (n to m)

number of muxes required

number of address lines in column number

number of address lines in column offset

Part B (10 points) Consider a memory system with 512 million addresses of four byte words
using DRAM chips organized as 64 million addresses by 16 bit words

word address lines for memory system

chips needed in one bank

banks for memory system

memory decoder required (n to m)

DRAM chips required

Part C (12 points) For the follow expression, derive a simplified sum of products expression
using a Karnaugh Map. Circle and list all prime implicants, indicating which are essential.

Out= A⋅B⋅D A⋅C⋅D A⋅B⋅C A⋅C⋅D

A

A

B B

C

C

C

D
D D

prime implicants
essential?
yes no

simplified SOP expression

4

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Problem 4 (4 parts, 38 points) Number Systems

Part A (8 points) Convert the following notations:

binary notation decimal notation

1010 1011.1010

41.875

binary notation hexadecimal notation

11 1100 0011.1100 0011 11

3F.23

Part B (9 points) For the representations below, determine the most positive value and the step
size (difference between sequential values). All answers should be expressed in decimal notation.
Fractions (e.g., 3/16ths) may be used. Signed representations are two’s complement.

representation most positive value step size

signed integer
(20 bits) . (0 bits)

unsigned fixed-point
(15 bits) . (5 bits)

signed fixed-point
(10 bits) . (10 bits)

Part C (9 points) A 20 bit floating point representation has a 13 bit mantissa field, a 6 bit
exponent field, and one sign bit. Express all answers in decimal.

What is the largest value that can be represented (closest to infinity)?

What is the smallest value that can be represented (closest to zero)?

How many decimal significant figures are supported?

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic,
and indicate whether an overflow occurs assuming all numbers are expressed using a five bit
unsigned fixed-point and five bit two’s complement fixed-point representations.

 1111.0
+ 1.1

 10.00
+ 10.00

 10001
- 11

 1.1100
- 0 .1011

result

unsigned error? □ no □ yes □ no □ yes □ no □ yes □ no □ yes

signed error? □ no □ yes □ no □ yes □ no □ yes □ no □ yes

5

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

Problem 5 (1 part, 30 points) Assembly Programming
Part A (30 points) Complete an assembly language routine that computes the average of
positives integers in a 200 element array. The array begins at array 5000. Ignore integers in the
array that negative (less than zero). Remember that memory is byte addressed and each word in
memory is four bytes long (the first word starts at 5000, the second word starts at 5004, etc.)
Each time a positive integer is encountered, the number of positive integers ($5) is incremented.
Later $5 is used to compute the average. Use the following register assignments: $1= array
pointer, $2= end address, $3= current element, $4= current sum, $5= num positive integers, $6=
branch predicate. The result (positive integer average) should be stored in $4.

label instruction comment

PosAvg: # init array ptr

compute end address

clear current sum

clear number pos ints

load current element

if element < 0

then skip

else add to sum

increment num pos ints

move to next element

if not done, loop

sum / num pos ints

move avg to $4

jr $31 # return to caller

6

ECE 2030 A 11:00pm Computer Engineering Spring 2011
5 problems, 7 pages Final Exam 6 May 2011

MIPS Instruction Set

instruction example meaning
arithmetic

add add $1,$2,$3 $1 = $2 + $3
subtract sub $1,$2,$3 $1 = $2 - $3
add immediate addi $1,$2,100 $1 = $2 + 100
add unsigned addu $1,$2,$3 $1 = $2 + $3
subtract unsigned subu $1,$2,$3 $1 = $2 - $3
add immediate unsigned addiu $1,$2,100 $1 = $2 + 100
set if less than slt $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if less than immediate slti $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
set if less than unsigned sltu $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if < immediate unsigned sltui $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
multiply mult $2,$3 Hi, Lo = $2 * $3, 64-bit signed product
multiply unsigned multu $2,$3 Hi, Lo = $2 * $3, 64-bit unsigned product
divide div $2,$3 Lo = $2 / $3, Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 / $3, Hi = $2 mod $3, unsigned

transfer
move from Hi mfhi $1 $1 = Hi
move from Lo mflo $1 $1 = Lo
load upper immediate lui $1,100 $1 = 100 x 216

logic
and and $1,$2,$3 $1 = $2 & $3
or or $1,$2,$3 $1 = $2 | $3
and immediate andi $1,$2,100 $1 = $2 & 100
or immediate ori $1,$2,100 $1 = $2 | 100
nor nor $1,$2,$3 $1 = not($2 | $3)
xor xor $1, $2, $3 $1 = $2 ⊕ $3
xor immediate xori $1, $2, 255 $1 = $2 ⊕ 255

shift
shift left logical sll $1,$2,5 $1 = $2 << 5 (logical)
shift left logical variable sllv $1,$2,$3 $1 = $2 << $3 (logical), variable shift amt
shift right logical srl $1,$2,5 $1 = $2 >> 5 (logical)
shift right logical variable srlv $1,$2,$3 $1 = $2 >> $3 (logical), variable shift amt
shift right arithmetic sra $1,$2,5 $1 = $2 >> 5 (arithmetic)
shift right arithmetic variable srav $1,$2,$3 $1 = $2 >> $3 (arithmetic), variable shift amt

memory
load word lw $1, 1000($2) $1 = memory [$2+1000]
store word sw $1, 1000($2) memory [$2+1000] = $1
load byte lb $1, 1002($2) $1 = memory[$2+1002] in least sig. byte
load byte unsigned lbu $1, 1002($2) $1 = memory[$2+1002] in least sig. byte
store byte sb $1, 1002($2) memory[$2+1002] = $1 (byte modified only)

branch
branch if equal beq $1,$2,100 if ($1 = $2), PC = PC + 4 + (100*4)
branch if not equal bne $1,$2,100 if ($1 ≠ $2), PC = PC + 4 + (100*4)

jump
jump j 10000 PC = 10000*4
jump register jr $31 PC = $31
jump and link jal 10000 $31 = PC + 4; PC = 10000*4

7

	DRAM chips required

