Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work.
Good Luck!

Your Name (please print) \qquad

Problem 1 (2 parts, 18 points)
Datapath Elements
Part A (9 points) Consider the following inputs, shift types, and directions. Determine the resulting outs (in hexadecimal).

Input Value	Output Value	Shift Type	Shift Amount
0×87654321	rotate	left 8 bits	
0×87654321		arithmetic	right 12 bits
0×87654321	logical	left 28 bits	

Part B (9 points) Consider the following input and logical operation function codes. Determine the logical function and output value (in hexadecimal) for the operation.

X Input	Y Input	Output Value	Logical Function	Function Code
87654321	00 FF 00 FF			E
87654321	00 FF 00 FF			3
87654321	00 FF 00 FF			7

Problem 2 (3 parts, 32 points)
Memory Systems
Part A (12 points) Consider a DRAM chip organized as $\mathbf{5 1 2}$ million addresses of eight bit words. Assume both the DRAM cell and the DRAM chip is square. The column number and offset concatenate to form the memory address. Using the organization approach discussed in class, answer the following questions about the chip. Express all answers in decimal.
number of columns
column decoder required (n to m)

$$
\text { type of mux required (} n \text { to } m \text {) }
$$

\qquad number of muxes required
number of address lines in column number
number of address lines in column offset
Part B (10 points) Consider a eight Gbyte memory system with two billion addresses of four byte words using DRAM chips organized as $\mathbf{5 1 2}$ million addresses by eight bit words.
word address lines for memory system
chips needed in one bank
banks for memory system
memory decoder required (n to m)
DRAM chips required

Part C (10 points) Design a 48 M address x 8 bit memory system with six 16 M address x 4 bit memory chips. Label all busses and indicate bit width. Assume R/W is connected and not shown here. Use a decoder if necessary. Place a star on the chip(s) that contain address $25,000,000$.

MSEL \qquad

Problem 3 (5 parts, 28 points)
Microcode
Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values in hexadecimal notation. Use ' X ' when a value is don't cared. For shift operations, expression shift amount as unsigned value. The shift direction field (dir) is 1 for left shifts, 0 for right shifts. For maximum credit, complete the description field.

Part A (5 points) $\$ 7 \leftarrow \$ 8+\$ 9$. Use only registers 7, 8, and 9 .

$\#$	X	Y	Z	rwe	im en	im va	$a u$ en	$-a$ /s	lu en	lf	su en	st	dir	
1														

Part B (5 points) Mask all but the ten least significant bits of $\$ 6$. Use only register 6.

$\#$	X	Y	Z	rwe	im en	im va	au en	-a /s	lu en	lf	su en	st	dir	
1														

Part C (5 points) Rotate register $\$ 3$ by 16 bits. Use only register 3.

$\#$	X	Y	Z	$r w e$	im $e n$	im va	$a u$ $e n$	$-a$ /s	lu en	lf	$s u$ $e n$	st	dir	
1														

Part D (8 points) $\$ 5 \leftarrow 63 * \$ 4$. Use only registers 4 and 5.

$\#$	X	Y	Z	$r w e$	$i m$ $e n$	im va	$a u$ $e n$ $e n$	$-a$ is	lu $e n$	lf	$s u$ $e n$	st	dir	description
1														
2														

Part E (5 points) $\$ 7 \leftarrow \$ 5$ xor $\$ 6$. Use only registers 5,6 , and 7 .

$\#$	X	Y	Z	rwe	im en	im va	au en	$-a$ $/ s$	lu en	lf	su en	st	dir	
1														

Problem 4 (2 parts, 22 points)
Part A (11 points) Design a toggle cell using two transparent latches, one 4to1 mux, and one inverter (use icons, labeling inputs \& outputs). Your toggle cell should have an active high toggle enable input TE, and an active low clear input $\overline{C L R}$, clock inputs Φ_{1} and Φ_{2}, and an output Out. The $\overline{\mathbf{C L R}}$ signal has precedence over TE. Also complete the behavior table for the toggle cell.

$\frac{1}{C L R}$

$\stackrel{1}{T E}$

Part B (11 points) Now combine these toggle cells to build a divide by 7 counter. Your counter should have an external clear, external count enable, and three count outputs $\mathrm{O}_{2}, \mathrm{O}_{1}, \mathrm{O}_{0}$. Use any basic gates (AND, OR, NAND, NOR, \& NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design should support multi-digit systems.

Ext CE -

$-O_{1}$

$-\mathrm{O}_{2}$

