Problem 1 (3 parts, 24 points)
Decoding Decoders
Part A (6 points) Define a 1 to 2 decoder by completing the behavior table.

IN	EN	O0	O1
X	0	0	0
0	1	1	0
1	1	0	1

Part B (8 points) Implement a 1 to 2 decoder using basic gates. Assume only true (noncomplemented) inputs are available. Label all inputs and outputs.

Part C (10 points) Using only the three 1 to 2 decoders shown below, implement a 2 to 4 decoder with an enable. Label the decoder inputs $\left(\mathrm{IN}_{1}, \mathrm{IN}_{0}, \mathrm{EN}\right)$ and outputs (O0, O1, O2, O3).

Problem 2 (4 parts, 30 points)
Design Fiesta
Complete each design below. Be sure to label all signals.
Part A: Implement the following expression using N and
P type switches. \quad Out $_{x}=(\bar{A}+B \cdot \bar{C}) \cdot D$

Part B: Implement the following behavior using only pass gates and inverters.

$$
\begin{array}{ll|ll}
\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \overline{\mathrm{Z}} \\
\hline \mathrm{~A} & 0 & \mathrm{Q}_{0} & \mathrm{Q}_{0} \\
\mathrm{~A} & 1 & \mathrm{~A} & \overline{\mathrm{~A}}
\end{array}
$$

Part C: Determine the appropriate expression for this mixed logic design. How many transistors are required?

Out $=\overline{A+\bar{B}}+\bar{C}+\bar{D} \cdot E$
$\#$ transistors $=8+6+4+4 \times 2=26 T$

Part D: Reimplement the design in Part C using only NAND and NOT gates. How many transistors are required?

\# transistors $=6+2 \times 4+2 \times 2=18 T$

Problem 3 (1 part, 25 points)
Assembly Programming
Part A (25 points) Complete this subroutine that searches an array of 100 integers beginning at memory address 5000 and returns its minimum (\$4) and maximum (\$5) values. Use the following registers: $\$ 1=$ array pointer, $\$ 2=$ end address, $\$ 3=$ current value, $\$ 6=$ branch predicate.

label	instruction	comment
MinMax:	addi $\$ 1, \$ 0,5000$	$\#$ init array ptr
	addi $\$ 2, \$ 1,400$	$\#$ set end address
	lw $\$ 4, \quad(\$ 1)$	$\#$ init min
	add $\$ 5, \$ 3, \$ 0$	$\#$ init max
Loop:	lw $\$ 3, \quad(\$ 1)$	$\#$ load current element
	slt $\$ 6, \$ 3, \$ 4$	$\#$ if current >= min
	beq $\$ 6, \$ 0$, Skip1	$\#$ then skip update
	add $\$ 4, \$ 3, \$ 0$	$\#$ update min
Skip1:	slt $\$ 6, \$ 5, \$ 3$	$\#$ if current <= max
	beq $\$ 6, \$ 0$, Skip2	$\#$ then skip update
	add $\$ 5, \$ 3, \$ 0$	$\#$ update max
Skip2:	addi $\$ 1, \$ 1,4$	$\#$ point to next element
	bne $\$ 1, \$ 2$, Loop	$\#$ if not done, loop
	jr $\$ 31$	$\#$ return to caller

MIPS Instruction Set

instruction	example	meaning
add	add \$1,\$2,\$3	\$1 = \$2 + \$3
subtract	sub \$1,\$2,\$3	\$1 = \$2-\$3
add immediate	addi \$1,\$2,100	\$1 = \$2 + 100
multiply	mul \$1,\$2,\$3	\$1 = \$2 * \$3
divide	div \$1,\$2,\$3	\$1 = \$2 / \$3
and	and \$1,\$2,\$3	\$1 = \$2 \& \$3
or	or \$1, \$2, \$3	\$1 = \$2 \| \$3
xor	xor \$1,\$2,\$3	\$1 = \$2 xor \$3
and immediate	andi \$1,\$2,100	\$1 = \$2 \& 100
or immediate	ori \$1,\$2,100	\$1 = \$2 \| 100
xor immediate	xori \$1,\$2,100	\$1 = \$2 xor 100
shift left logical	sll \$1,\$2,5	\$1 = \$2 << 5 (logical)
shift right logical	srl \$1,\$2,5	\$1 = \$2 >> 5 (logical)
shift left arithmetic	sla \$1,\$2,5	\$1 = \$2 << 5 (arithmetic)
shift right arithmetic	sra \$1,\$2,5	\$1 = \$2 >> 5 (arithmetic)
load word	1w \$1, (\$2)	\$1 = memory [\$2]
store word	Sw \$1, (\$2)	memory [\$2] = \$1
load upper immediate	lui \$1,100	\$1 $=100 \times 2{ }^{16}$
branch if equal	beq \$1,\$2,100	if $(\$ 1=\$ 2), ~ P C=P C+4+(100 * 4)$
branch if not equal	bne \$1,\$2,100	if $(\$ 1 \neq \$ 2), ~ P C=P C+4+(100 * 4)$
set if less than	slt \$1, \$2, \$3	if (\$2 < \$3), \$1 = 1 else \$1 = 0
set if less than immediate	slti \$1, \$2, 100	if (\$2 < 100), \$1 = 1 else \$1 = 0
jump	j 10000	$\mathrm{PC}=10000$
jump register	jr \$31	PC = \$31
jump and link	jal 10000	\$31 = PC + 4; PC = 10000

Problem 4 (4 parts, 36 points)
"Math is fun"
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

00000000	000000	000000	000000000000000000
opcode	dest. reg.	source 1 reg.	immediate value

What is the maximum number of opcodes? 256
What is the number of registers?

256
64

What is the range of the signed immediate value? \qquad
Part B (9 points) For the eight bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (8 bits) . (0 bits)	255	1
signed fixed-point (6 bits) . (2 bits)	31	$1 / 4$
unsigned fixed-point $(0$ bits) $)(8$ bits)	$255 / 256$	$1 / 256$

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?
What is the smallest value that can be represented (closest to zero)?
How many decimal significant figures are supported?
11
Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

Problem 5 (5 parts, 30 points)
Microcode in Reverse
The microcode fragment below comes from a color scanner control program that runs on the datapath discussed in class. Unfortunately, don't care values (X) have been converted to zeros. Assume register zero is a normal register (not hardwired to the value zero).

$\#$	X	Y	Z	$r w e$	im en	im va	$a u$ en	$-a / s$	$l u$ $e n$	$l f$	su en	st	$l d$ en	$s t$ $e n$	$r /-w$	msel
1	0	0	3	1	1	4000	0	0	1	C	0	0	0	0	0	0
2	3	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1
3	0	0	2	1	1	FF	0	0	1	8	0	0	0	0	0	0
4	0	0	0	1	1	8	0	0	0	0	1	0	0	0	0	0
5	0	0	1	1	1	FF	0	0	1	8	0	0	0	0	0	0
6	1	2	2	1	0	0	1	0	0	0	0	0	0	0	0	0
7	0	0	0	1	1	8	0	0	0	0	1	0	0	0	0	0
8	0	0	1	1	1	FF	0	0	1	8	0	0	0	0	0	0
9	1	2	2	1	0	0	1	0	0	0	0	0	0	0	0	0
10	0	0	0	1	1	8	0	0	0	0	1	0	0	0	0	0
11	0	2	2	1	0	0	1	0	0	0	0	0	0	0	0	0
12	2	0	2	1	1	2	0	0	0	0	1	1	0	0	0	0
13	3	2	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Part A (5 points) Describe the operation that occurs during cycle 2. Be specific.

$$
\$ 0<- \text { mem[} 0 \times 4000]
$$

For the remaining parts, assume $\$ 0=0 \times 44022118$ at the end of cycle 2.

Part B (5 points) What is the value of register 0 at the completion of cycle 7 (in hexadecimal).
0×4402
Part C (5 points) What is the value of register 2 at the completion of cycle 9 (in hexadecimal).
$0 \times 3 B$
Part D (5 points) What is the value of register 2 at the completion of cycle 12 (in hexadecimal).

$0 \times 1 F$

Part E (10 points) Describe the operation of this microcode fragment. Be specific.
Four packed eight-bit unsigned integers are loaded from memory at 0x4000, unpacked. The average of the four values is computed and stored back to memory at 0×4000.

