Problem 1 (3 parts, 30 points)
Memory Systems
Part A (10 points) Consider a 256 Mbit DRAM chip organized as $\mathbf{3 2}$ million addresses of one byte words. Assume both the DRAM cell and the DRAM chip is square. The column number and offset concatenate to form the memory address. Using the organization approach discussed in class, answer the following questions about the chip. Express all answers in decimal.

number of columns	$\operatorname{Sqrt}\left(2^{28}\right)=2^{14}=16 \mathrm{~K}$
column decoder required $(n$ to $m)$	14 to 16 K
type of mux required $(n$ to $m)$	2 K to 1
number of muxes required	8
number of address lines in column number	$\log _{2}(16 \mathrm{~K})=14$
number of address lines in column offset	$\log _{2}(2 \mathrm{~K})=11$

Part B (10 points) Consider a one Gbyte memory system with $\mathbf{1 2 8}$ million addresses of eight byte words using DRAM chips organized as 16 million addresses by 16 bit words.

word address lines for memory system	$\log _{2}(128 M)=27$
chips needed in one bank	$8 / 2=64 / 16=4$
banks for memory system	$128 M / 16 M=8$
memory decoder required $(n$ to $m)$	3 to 8
DRAM chips required	$4 \times 8=32$

Part C (10 points) (10 points) Design a 96 M address x 4 bit memory system using 32 M address x 4 bit memory chips. Label all busses and indicate bit width. Assume R/W is connected and not shown here. Use a decoder if necessary. Be sure to include the address bus, data bus, and MSEL.

Problem 2 (3 parts, 25 points)
Microcode
Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values in hexadecimal notation. Use ' X ' when a value is don't cared. For maximum credit, complete the description field. \cap means bitwise logical AND.
Part A (10 points) Use only registers $\mathbf{1} \boldsymbol{\&} \mathbf{2} . \quad R_{2}=\frac{\frac{R_{1}}{256}+R_{1} \cap 255}{2}$

$\#$	X	Y	Z	$r w e$	$i m$												
$e n$	$i m v a$	$a u$ $e n$	$-a$ s	$l u$ $e n$	$l f$	$s u$ $e n$	$s t$	$l d$ $e n$	$s t$ $e n$	$r /$ $-w$	$m s e l$	description					
1	1	X	2	1	1	FF	0	X	1	8	0	X	0	0	X	0	$\mathrm{R} 2<-\mathrm{R} 1 \& 0 \times \mathrm{FF}$
2	1	X	1	1	1	8	0	X	0	X	1	1	0	0	X	0	$\mathrm{R} 1<-\mathrm{R} 1 / 256$
3	1	2	2	1	0	X	1	0	0	X	0	X	0	0	X	0	$\mathrm{R} 2<-\mathrm{R} 1+\mathrm{R} 2$
4	2	X	2	1	1	1	0	X	0	X	1	1	0	0	X	0	$\mathrm{R} 2<-\mathrm{R} 2 / 2$

Part B (10 points) mem[0x100] = 0 - mem[0x100]. Use only registers $\mathbf{1 , 2 , \&} 3$.

\#	X	Y	Z	rwe	${ }_{\text {im }}^{\text {im }}$	im va	au en	- ${ }_{\text {- }}^{\text {s }}$	${ }_{l}^{l u}$	If		su	st	$\begin{aligned} & l d \\ & e n \\ & e \end{aligned}$		${ }_{-}^{r /}$	msel	description
1	X	x	1	1	1	100	0	X	1	c		0	X	0	0	X	0	R1 <-100
2	1	X	2	1	0	X	0	x	0	X		0	X	1	0	1	1	R2 - mem[R1]
3	X	X	3	1	1	0	0	x	1	c		0	X	0	0	X	0	R3 <- 0
4	3	2	2	1	0	X	1	1	0	X		0	X	0	0	X	0	R2 <- 0 - R2
5	1	2	X	0	0	X	0	X	0	x		0	X	0	1	0	1	mem[R1] <- R2

Part C (5 points) Exchange R_{1} and R_{2}. Use only registers 1,2 \& 3.

\#	x	Y	z	rwe	$\stackrel{i m}{\text { en }}$	im va	au en	$\stackrel{-a}{\text { / }}$	${ }_{\text {en }}^{\text {l }}$	If	su en	st	${ }_{\text {en }}^{\text {ld }}$	st en	r	msel	description
1	1	2	1	1	0	X	0	X	1	6	0	X	0	0	X	0	R1 <- R1 xor R2
2	1	2	2	1	0	X	0	X	1	6	0	x	0	0	X	0	R2 <- R1 xor R2
3	1	2	1	1	0	X	0	x	1	6	0	x	0	0	X	0	R1 <- R1 xor R2

Part A (10 points) Design a toggle cell using transparent latches and basic gates. Use an icon for the latch. Your toggle cell should have an active high toggle enable input TE, and an active low clear input $\overline{\operatorname{CLR}}$, clock inputs Φ_{1} and Φ_{2}, and an output Out. The $\overline{\operatorname{CLR}}$ signal has precedence over TE. Label all signals. Also complete the behavior table for the toggle cell.

TE	$\overline{\text { CLR }}$	CLK	Out
0	0	$\uparrow \downarrow$	0
1	0	$\uparrow \downarrow$	0
0	1	$\uparrow \downarrow$	Q_{0}
1	1	$\uparrow \downarrow$	\bar{Q}_{0}

Part B (10 points) Now combine these toggle cells to build a divide by 10 (decade) counter. Your counter should have an external clear, external count enable, and four count outputs $\mathrm{O}_{3}, \mathrm{O}_{2}$, $\mathrm{O}_{1}, \mathrm{O}_{0}$. Use any basic gates (AND, OR, NAND, NOR, \& NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design should support multi-digit systems.

Part C (10 points) Build a three digit decimal counter ($0-999$) using three decade counters drawn below. Use any basic gates you require. Assume clock inputs are already connected.

Problem 4 (2 parts, 15 points)
Microcode
Part A (9 points) Consider the following input and output values for a shift operation. Determine the shift type and amount required to achieve the listed transformation. I/Os are in hexadecimal.

Input Value	Output Value	Shift Type	Shift Amount (signed decimal value)
87654321	32187654	rotate	+12 or -20 bits
87654321	54321000	arith or logic	-12 bits
87654321	FFFFFF87	arith	+24

Part B (6 points) Consider the following input and output values for a logical operation. Determine the logical function and function code (in hexadecimal) required for the operation.

X Input	Y Input	Output	Logical Function	Function Code
87654321	0000 FFFF	0000 FFFF	"Y"	C
87654321	0000 FFFF	FFFFBCDE	NAND	7

