Problem 1 (3 parts, 24 points)
Part A (6 points) Define a 1 to 2 decoder by completing the behavior table.

IN	EN	O0	O1
X	0	0	0
0	1	1	0
1	1	0	1

Part B (8 points) Implement a 1 to 2 decoder using basic gates. Assume only true (noncomplemented) inputs are available. Label all inputs and outputs.

Part C (10 points) Using only the three 1 to 2 decoders shown below, implement a 2 to 4 decoder with an enable. Label the decoder inputs $\left(\mathrm{IN}_{1}, \mathrm{IN}_{0}, \mathrm{EN}\right)$ and outputs (O0, O1, O2, O3).

Problem 2 (2 parts, 18 points)
"Get your priorities right!"
Consider a priority encoder with the following behavior:

In_{3}	In_{2}	In_{1}	In_{0}	Valid	O_{1}	O_{0}
0	0	0	0	0	X	X
X	X	X	1	1	0	0
X	X	1	0	1	0	1
X	1	0	0	1	1	0
1	0	0	0	1	1	1

Part A (8 points) List the inputs $\left(\operatorname{In}_{0}, \operatorname{In}_{1}, \operatorname{In}_{2}\right.$, and $\left.\mathrm{In}_{3}\right)$ in increasing priority.

$$
\frac{I n_{3}}{\text { lowest priority }}<\frac{I n_{2}}{3^{\text {rd }} \text { highest priority }}<\frac{I n_{1}}{2^{\text {nd }} \text { highest priority }}<\frac{I n_{0}}{\frac{\text { highest priority }}{}}
$$

Part B (10 points) Express the behavior of O_{0} in the map below. Derive a simplified sum of products expression using a Karnaugh Map. Circle and list the prime implicants, indicating which are essential. Then write the simplified SOP expression.

$\mathrm{O}_{0}=$
$\overline{\operatorname{InO}} \cdot(\operatorname{In} 1+\overline{\operatorname{In} 2})$

Problem 3 (4 parts, 40 points)
Number Systems \& Arithmetic
Part A (10 points) Convert the following notations:

binary notation	decimal notation
11011011.	219
1011100.1101	92.8125
11011.101	27.625
binary notation	hexadecimal notation
100100101.110111	$125 . D C$
110010110100.001010110001	CB4.2B1

Part B (12 points) For the 22 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (22 bits) . (0 bits)	4 M	1
signed fixed-point (18 bits) . (4 bits)	128 K	$1 / 16$
signed fixed-point (14 bits) . (bits)	8 K	$1 / 256$
signed fixed-point $(11$ bits) . (11 bits)	1 K	$1 / 2 \mathrm{~K}$

Part C (6 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit.

$$
\begin{array}{lc}
\text { What is the largest value that can be represented (closest to infinity)? } & 2^{15} \\
\text { What is the smallest value that can be represented (closest to zero)? } & 2^{-16} \\
\text { How many decimal significant figures are supported? } & 3
\end{array}
$$

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

	10.11	111.10	100.01	1.11
	+11.01	$\begin{array}{r}11.01 \\ +\quad 1.01 \\ \hline\end{array}$	$\underline{-10.11}$	-10.00
result	110.00	000.11	001.10	111.11
unsigned error?				

Problem 4 (3 parts, 18 points)
"Does this register?"
Part A (6 points) Express the behavior of the circuit below. Use standard symbols ($0,1, \mathrm{X}, \mathrm{Z}_{0}$, Q_{0}, etc.). Then name the circuit.

A	B	X	Y
0	0	Q_{0}	\bar{Q}_{0}
1	0	Q_{0}	\bar{Q}_{0}
0	1	0	1
1	1	1	0

This circuit is a
Part B (6 points) Implement a register below using only latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_{1} \Phi_{2}$ cycle; so the output should be the value at the end of a cycle (for the given inputs).

In	WE	Clk	Out	$\overline{\text { Out }}$
A	0	$\uparrow \downarrow$	Q_{0}	\bar{Q}_{0}
A	1	$\uparrow \downarrow$	A	\bar{A}

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Draw crosshatch where Out is unknown.

