ECE 2030 A 10:00am	Computer Engineering	Spring 2010
4 problems, 4 pages	Exam Two Solution	10 March 2010

Decoding Decoders

Problem 1 (3 parts, 24 points)

Part A (6 points) Define a 1 to 2 decoder by completing the behavior table.

IN	EN	O0	O1	
Х	0	0	0	
0	1	1	0	decoder
1	1	0	1	EN 01

Part B (8 points) Implement a 1 to 2 decoder using basic gates. Assume only true (non-complemented) inputs are available. Label all inputs and outputs.

Part C (10 points) Using *only* the three 1 to 2 decoders shown below, implement a 2 to 4 decoder with an enable. Label the decoder inputs (IN_1 , IN_0 , EN) and outputs (O0, O1, O2, O3).

Problem 2 (2 parts, 18 points)

Consider a priority encoder with the following behavior:

In ₃	In ₂	In ₁	In ₀	Valid	O_1	O_0
0	0	0	0	0	Х	Х
Х	Х	Х	1	1	0	0
Х	Х	1	0	1	0	1
X	1	0	0	1	1	0
1	0	0	0	1	1	1

Part A (8 points) List the inputs (In₀, In₁, In₂, and In₃) in increasing priority.

Part B (10 points) Express the behavior of O_0 in the map below. Derive a simplified *sum of products* expression using a Karnaugh Map. Circle and list the prime implicants, indicating which are essential. Then write the simplified SOP expression.

"Get your priorities right!"

3

Problem 3 (4 parts, 40 points)

Part A (10 points) Convert the following notations:

Number Systems & Arithmetic

binary notation	decimal notation
1101 1011.	219
101 1100.1101	92.8125
11011.101	27.625
binary notation	hexadecimal notation
1 0010 0101.1101 11	125.DC
1100 1011 0100.0010 1011 0001	CB4.2B1

Part B (12 points) For the 22 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (22 bits) . (0 bits)	4M	1
signed fixed-point (18 bits) . (4 bits)	128K	1/16
signed fixed-point (14 bits) . (8 bits)	8K	1/256
signed fixed-point (11 bits) . (11 bits)	1K	1/2K

Part C (6 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2 ¹⁵
What is the smallest value that can be represented (closest to zero)?	2 -16

How many decimal significant figures are supported?

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **five bit unsigned fixed-point** and **five bit two's complement fixed-point** representations.

	10	0.11	11	1.10	10	0.01	1	.11
	+ 1	1.01	+	<u>1.01</u>	- 1	0.11_	<u>- 1(</u>	<u>).00</u>
result	110	0.00	00	00.11	00	01.10	1:	11.11
unsigned error?	∎ no	□ yes	□ no	∎ yes	∎ no	□ yes	□ no	∎ yes
signed error?	□ no	∎ yes	∎ no	□ yes	\Box no	∎ yes	∎ no	□ yes

ECE 2030 A 10:00am	Computer Engineering	Spring 2010
4 problems, 4 pages	Exam Two Solution	10 March 2010

Problem 4 (3 parts, 18 points)

"Does this register?"

Part A (6 points) Express the behavior of the circuit below. Use standard symbols $(0, 1, X, Z_0, Q_0, \text{ etc.})$. Then name the circuit.

Α	В	Х	Y
0	0	Q°	\overline{Q}_{0}
1	0	Q°	\overline{Q}_{\circ}
0	1	0	1
1	1	1	0

This circuit is a

Transparent Latch

Part B (6 points) Implement a register below using *only* latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_1 \Phi_2$ cycle; so the output should be the value at the end of a cycle (for the given inputs).

In	WE	Clk	Out	Out
Α	0	$\uparrow \downarrow$	Q°	\overline{Q}_{0}
А	1	$\uparrow \downarrow$	A	Ā

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where Out is unknown*.

