ECE 2030 A 10:00am	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

ECE 2030 A 10:00am	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Decoding Decoders

Problem 1 (3 parts, 24 points)

Part A (6 points) Define a 1 to 2 decoder by completing the behavior table.

IN	EN	O0	01	
Х	0			1 to 2 decoder
0	1			— EN 01 —
1	1			

Part B (8 points) Implement a 1 to 2 decoder using basic gates. Assume only true (non-complemented) inputs are available. Label all inputs and outputs.

Part C (10 points) Using *only* the three 1 to 2 decoders shown below, implement a 2 to 4 decoder with an enable. Label the decoder inputs (IN_1 , IN_0 , EN) and outputs (O0, O1, O2, O3).

2

Problem 2 (2 parts, 18 points)

Consider a priority encoder with the following behavior:

In ₃	In ₂	In_1	In ₀	Valid	O_1	O_0
0	0	0	0	0	Х	Х
Х	Х	Х	1	1	0	0
Х	Х	1	0	1	0	1
X	1	0	0	1	1	0
1	0	0	0	1	1	1

Part A (8 points) List the inputs (In₀, In₁, In₂, and In₃) in increasing priority.

Part B (10 points) Express the behavior of O_0 in the map below. Derive a simplified *sum of products* expression using a Karnaugh Map. Circle and list the prime implicants, indicating which are essential. Then write the simplified SOP expression.

"Get your priorities right!"

2 _____

Problem 3 (4 parts, 40 points)

Part A (10 points) Convert the following notations:

binary notation	decimal notation
1101 1011.	
101 1100.1101	
	27.625
binary notation	hexadecimal notation
1 0010 0101.1101 11	
	CB4.2B1

Part B (12 points) For the 22 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (22 bits) . (0 bits)		
signed fixed-point (18 bits) . (4 bits)		
signed fixed-point (14 bits) . (8 bits)		
signed fixed-point (11 bits) . (11 bits)		

Part C (6 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit.

What is the smallest value that can be represented (closest to zero)?

How many decimal significant figures are supported?

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **five bit unsigned fixed-point** and **five bit two's complement fixed-point** representations.

	1	0.11	11	1.10	10	0.01]	l.11
	<u>+1</u>	1.01	+	1.01	- 1	0.11_	<u>- 1(</u>	0.00
result								
unsigned error?	□ no	□ yes	□ no	□ yes	□ no	□ yes	□ no	□ yes
signed error?	□ no	□ yes	□ no	□ yes	□ no	□ yes	□ no	□ yes

ECE 2030 A 10:00am	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Problem 4 (3 parts, 18 points)

"Does this register?"

Part A (6 points) Express the behavior of the circuit below. Use standard symbols $(0, 1, X, Z_0, Q_0, \text{ etc.})$. Then name the circuit.

Α	В	Х	Y
0	0		
1	0		
0	1		
1	1		

This circuit is a

Part B (6 points) Implement a register below using *only* latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_1 \Phi_2$ cycle; so the output should be the value at the end of a cycle (for the given inputs).

,	In	WE	Clk	Out	Out
	Α	0	↑↓		
•	Α	1	$\uparrow \downarrow$		

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where Out is unknown*.

