Problem 1 (3 parts, 30 points)
Instruction Formats, Etc.
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

0000000	000000	000000	0000000000000
opcode	dest. reg.	source 1 reg.	immediate value

What is the maximum number of opcodes?

$2^{7}=128$
$2^{6}=64$
$2^{13}= \pm 4 K$

Part B (9 points) Suppose the circuit below has the following input priority: $I_{1}>I_{3}>I_{0}>I_{2}$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_{1}.

Part C (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned and six bit two's complement representations.

	$\begin{array}{r} 101101 \\ +10101 \\ \hline \end{array}$	$\begin{array}{r} 11010 \\ +\quad 10111 \\ \hline \end{array}$	$\begin{array}{r} 10001 \\ -\quad 111010 \\ \hline \end{array}$	$\begin{array}{r} 110101 \\ -\quad 11110 \\ \hline \end{array}$
result	000010	110001	010111	010111
unsigned error?	yes	no	yes	no
signed error?	no	yes	no	yes

Problem 2 (4 parts, 32 points)
Dueling Designs
For each part implement the specified device. Label all inputs and outputs.
Part A (8 points) Complete the incomplete \quad Part B (8 points) Implement the expression in circuit below using N and P type switches and mixed logic notation using NOR gates. write the expression for Out $_{Y}$.

$$
\text { Outy }=\bar{A}+B(\bar{C}+D)
$$

Part C (8 points) Implement a 2 to 1 MUX using a 1 to 2 decoder and basic gates (AND, OR, NAND, NOR, NOT, \& XOR).

Part D (8 points) Implement a divide by four counter using toggle cells and minimum additional basic gates.

Problem 3 (3 parts, 26 points)
Microcode
Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values, except memory addresses, in hexadecimal notation. Use ' X ' when a value is don't cared. For maximum credit, complete the description field. In each part, modify only registers 7 \& 8.
Part A (5 points) $\quad R_{7}=\left(R_{8}-15\right) / 512$
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \# & X & Y & Z & r w e & \begin{array}{c}\text { im } \\ e n\end{array} & \text { im va } & \begin{array}{c}a u \\ e n\end{array} & \frac{s}{a}\end{array} \begin{array}{c}l u \\ e n\end{array}\right)$

Part B (15 points) Compute mem[4000] $\oplus R_{3}$ and store the result in mem[4004]. \oplus means bitwise logical XOR.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# \& X \& Y \& Z \& rwe \& im
$e n$

en \& im va \& $a u$
$e n$ \& $\frac{s}{a}$ \& lu
en \& $l f$ \& su
en \& st \& $l d$

$e n$ \& | $s t$ |
| :---: |
| $e n$ | \& $\frac{r}{w}$ \& msel \& description \\

\hline 1 \& x \& x \& 7 \& 1 \& 1 \& 4000 \& 0 \& \mathbf{x} \& 1 \& C \& 0 \& \mathbf{x} \& 0 \& 0 \& \mathbf{x} \& 0 \& $\mathrm{R7}=4000$ \\
\hline 2 \& 7 \& x \& 8 \& 1 \& 0 \& x \& 0 \& x \& 0 \& x \& 0 \& x \& 1 \& 0 \& 1 \& 1 \& $\mathrm{R} 8=\mathrm{Mem}(\mathrm{R} 7)$ \\
\hline 3 \& 8 \& 3 \& 8 \& 1 \& 0 \& x \& 0 \& x \& 1 \& 6 \& 0 \& \mathbf{x} \& 0 \& 0 \& x \& 0 \& $\mathrm{R} 8=\mathrm{R} 8 \oplus \mathrm{R} 3$ \\
\hline 4 \& 7 \& \mathbf{x} \& 7 \& 1 \& 1 \& 4 \& 1 \& 0 \& 0 \& \mathbf{x} \& 0 \& \mathbf{x} \& 0 \& 0 \& x \& 0 \& $\mathrm{R} 7=\mathrm{R} 7+4$ \\
\hline 5 \& 7 \& 8 \& \mathbf{x} \& 0 \& 0 \& x \& 0 \& \mathbf{x} \& 0 \& \mathbf{x} \& 0 \& \mathbf{x} \& 0 \& 1 \& 0 \& 1 \& Mem(R7) $=$ R8 \\
\hline 6 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline
\end{tabular}

Part C (6 points) $\quad R_{7}=18 \cdot R_{8} \quad$ (multiply R_{8} by 18)
$\left.\begin{array}{|l|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \# & X & Y & Z & r w e & \begin{array}{l}\text { im } \\ e n\end{array} & \text { im va } & \begin{array}{l}\text { au } \\ e n\end{array} & \frac{s}{a}\end{array} \begin{array}{l}\text { lu } \\ e n\end{array}\right)$

Problem 4 (3 parts, 24 points)
Part A (12 points) Consider a $\mathbf{4}$ Gbit DRAM chip organized as $\mathbf{6 4}$ million addresses of $\mathbf{6 4}$-bit words. Assume both the DRAM cell and the DRAM chip are square. The column number and offset concatenate to form the memory address. Using the organization approach discussed in class, answer the following questions about the chip. Express all answers in decimal (not powers of two).

Part C (6 points) Assume the following signals are applied to a register with write enable. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Assume Out is initially zero.

Problem 5 (2 parts, 23 points)
Assembly Language Programming
Part A (15 points) Write a MIPS subroutine CountX that reads in a vector of integers and counts the number of elements that have the value X (given in register \$1), placing the total count in register \$2. Assume the length of the vector (\# of integer elements) is stored in register $\$ 4$ and the base address of the vector is in register $\$ 5$. The size of the vector may be 0 . Follow the steps outlined in the comments in the rightmost column below. You may modify only registers \$2 through \$5.

label	instruction		comment
CountX:	addi	\$2, \$0, 0	\# clear match count (\$2 = 0)
	sll	\$4, \$4, 2	\# compute end addr: scale vector \# length by 4 and add to base address \# (2 instructions)
	add	\$4, \$4, \$5	
Loop:	beq	\$5, \$4, Exit	\# if current elem addr = end address, \# then exit loop
	1w	\$3, (\$5)	\# load current vector elem
	bne	\$3, \$1, Skip	\# if current elem ! $=\mathrm{x}$ then Skip
	addi	\$2, \$2, 1	\# else increment match count
Skip:	addi	\$5, \$5, 4	\# inc vector ptr to next elem
	j	Loop	\# loop back
Exit:	jr	\$31	\# return to caller

Part B (8 points) Consider the following code fragment.

address	label	instruction
1000		addi $\$ 10, \$ 0,0$
1004	Loop2:	lw $\$ 1, \quad$ \$12)
1008		jal CountX
1012		slt $\$ 9, \$ 2, \$ 10$
1016		bne $\$ 9, \$ 0$, Continue
1020		add $\$ 10, \$ 2, \$ 0$
1024	Continue:	addi $\$ 12, \$ 12,4$
1028		\ldots

1. What is the branch offset (in bytes) for the bne instruction at 1016 ?

If $\$ 10$ holds M and $\$ 2$ holds the result R of subroutine CountX, what simple mathematical expression do instructions at addresses 1012-1020 compute (express your answer in terms of M and R , not registers)?
2. Instructions 1012-1020 compute $\quad \max R$ returned from Count X (maintained in M)

What is the value of $\$ 31$ after the jal instruction at 1008 is executed?
3. The value of $\mathbf{\$ 3 1}=$

1012

