ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two Solutions	10 March 2010

Problem 1 (3 parts, 22 points)

*O*₁ =

Building Blocks

Part A (6 points) Implement a 1 to 2 demultiplexor with pass gates and inverters. Be sure to label all inputs and outputs.

Part B (8 points) Suppose the circuit below has the following input priority: $I_2 > I_3 > I_0 > I_1$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_1 .

	I_3	I_2	I_1	Ιo	V	O_1	<i>O</i> ₀
	0	0	0	0	0	Х	Х
$-I_{1} \sim O_{0}$	0	0	×	1	1	0	0
$-I_2 \operatorname{end}_{O_1}$	0	0	1	0	1	0	1
	×	1	×	×	1	1	0
	1	0	×	×	1	1	1
I	2 + I	3					

Part C (8 points) Which building block does the following circuit implement? Label all inputs and outputs by filling in the squares.

Problem 2 (3 parts, 28 points)

Number Systems

Part A (10 points) Convert the following notations:

binary notation	decimal notation	
1010 1100.	172	
110.1011	6.6875	
101 1111.101	95.625	
hexadecimal notation	octal notation	
A3.B	243.54	
5F3.DC	2763.67	

Part B (12 points) For the 32 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (32 bits) . (0 bits)	4G	1
signed fixed-point (24 bits) . (8 bits)	8 M	1/256
signed fixed-point (28 bits) . (4 bits)	128M	1/16
signed fixed-point (16 bits). (16 bits)	32K	1/64K

Part C (6 points) A 24 bit floating point representation has a 15 bit mantissa field, a 8 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2 ¹²⁷
What is the smallest value that can be represented (closest to zero)?	2 -128
How many decimal significant figures are supported?	4

ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two Solutions	10 March 2010

Problem 3 (3 parts, 24 points)

Adding & Subtracting

Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **six bit unsigned** and **six bit two's complement** representations.

8	101101 <u>+ 10111</u>	1110 + 10101	11001 - 111000	110100 <u>- 10010</u>
result	000100	100011	100001	100010
unsigned error?	Yes	No	Yes	No
signed error?	No	Yes	Yes	No

Part B (4 points) Complete the truth table below for a full adder.

Α	В	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Part C (8 points) Implement the full adder using only NAND, XOR, and inverter gates. Label inputs A, B, and C_{in} . Label outputs C_{out} and Sum.

ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two Solutions	10 March 2010

Problem 4 (4 parts, 26 points)

Registers and Latches

Part A (6 points) Implement a transparent latch using gates of any type (e.g., AND, inverter, pass gates), but use the minimum number of transistors. Label the inputs **In** and **En**, and output **Out**.

Part B (7 points) Design an RS latch using NOR gates only. Label inputs R and S. Label outputs OUT and \overline{OUT} . Do not attempt to employ mixed logic notation. Also complete the truth table.

R	S	OUT	OUT
0	0	Q0	$\overline{Q0}$
0	1	1	0
1	0	0	1
1	1	0	0

Part C (5 points) Expand the RS latch to an implementation of a two-phase non-overlapping clock, generated from an input signal **In** that is a periodic square wave. Use only an RS latch and basic gates (AND, OR, NAND, NOR, and inverters). Label the input **In** and the outputs F1 and F2.

Part D (8 points) Assume the following signals are applied to a register with write enable. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Assume Out* is initially zero.

