Problem 1 (3 parts, 22 points)
Building Blocks
Part A (6 points) Implement a 1 to 2 demultiplexor with pass gates and inverters. Be sure to label all inputs and outputs.

Part B (8 points) Suppose the circuit below has the following input priority: $I_{2}>I_{3}>I_{0}>I_{1}$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_{1}.

	I_{3}	I_{2}	I_{1}	I_{0}	V	O_{1}	O_{0}
\rightarrow	0	0	0	0	0	X	X
$\begin{array}{ll} -I_{0}^{I_{0}} & \stackrel{+}{\mathrm{I}} \\ \mathrm{I} & \mathrm{NO} O \end{array}$	0	0	\times	1	1	0	0
$-\mathrm{I}_{2} \stackrel{0}{\hat{n}} \mathrm{O} \mathrm{O}_{1}-$	0	0	1	0	1	0	1
$I_{3}{ }^{3} \stackrel{\circ}{0}$	x	1	x	x	1	1	0
	1	0	\times	x	1	1	1

$O_{1}=$
$I_{2}+I_{3}$
Part C (8 points) Which building block does the following circuit implement? Label all inputs and outputs by filling in the squares.
This implements a 4-to-1 mux

Part A (10 points) Convert the following notations:

binary notation	decimal notation
10101100.	$\mathbf{1 7 2}$
110.1011	6.6875
1011111.101	$\mathbf{9 5 . 6 2 5}$
hexadecimal notation	octal notation
A3.B	243.54
5F3.DC	$\mathbf{2 7 6 3 . 6 7}$

Part B (12 points) For the 32 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (32 bits) . (0 bits)	$\mathbf{4 G}$	$\mathbf{1}$
signed fixed-point (24 bits) . (8 bits)	$\mathbf{8 M}$	$\mathbf{1 / 2 5 6}$
signed fixed-point (28 bits) . (4 bits)	$\mathbf{1 2 8 M}$	$\mathbf{1 / 1 6}$
signed fixed-point (16 bits). (16 bits)	$\mathbf{3 2 K}$	$\mathbf{1 / 6 4 K}$

Part C (6 points) A 24 bit floating point representation has a 15 bit mantissa field, a 8 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)? 2^{127}
What is the smallest value that can be represented (closest to zero)? 2^{-128}
How many decimal significant figures are supported?

Problem 3 (3 parts, 24 points)
Adding \& Subtracting
Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned and six bit two's complement representations.

	$\begin{array}{r} 101101 \\ +10111 \\ \hline \end{array}$	$\begin{array}{r} 1110 \\ +\quad 10101 \end{array}$	$\begin{array}{r} 11001 \\ 111000 \end{array}$	$\begin{array}{r} 110100 \\ -\quad 10010 \\ \hline \end{array}$
result	000100	100011	100001	100010
unsigned error?	Yes	No	Yes	No
signed error?	No	Yes	Yes	No

Part B (4 points) Complete the truth table below for a full adder.

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {in }}$	$\mathbf{C}_{\text {out }}$	Sum
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

Part C (8 points) Implement the full adder using only NAND, XOR, and inverter gates. Label inputs \mathbf{A}, \mathbf{B}, and $\mathbf{C}_{\text {in }}$. Label outputs $\mathbf{C}_{\text {out }}$ and $\mathbf{S u m}$.

Problem 4 (4 parts, 26 points)
Part A (6 points) Implement a transparent latch using gates of any type (e.g., AND, inverter, pass gates), but use the minimum number of transistors. Label the inputs In and En, and output Out.

Part B (7 points) Design an RS latch using NOR gates only. Label inputs R and S. Label outputs OUT and OUT. Do not attempt to employ mixed logic notation. Also complete the truth table.

\mathbf{R}	\mathbf{S}	OUT	OUT
$\mathbf{0}$	0	Q0	$\overline{\text { Q0 }}$
0	1	1	0
1	0	0	1
1	1	0	0

Part C (5 points) Expand the RS latch to an implementation of a two-phase non-overlapping clock, generated from an input signal In that is a periodic square wave. Use only an RS latch and basic gates (AND, OR, NAND, NOR, and inverters). Label the input In and the outputs F1 and F2.

Part D (8 points) Assume the following signals are applied to a register with write enable. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Assume Out is initially zero.

