
ECE 2030 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Three	21 April 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)_____

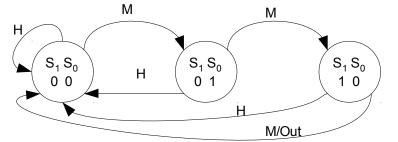
ECE 2030 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Three	21 April 2010
Problem 1 (3 parts, 30 point	ts)	Memory Systems
Assume both the DRAM cell a to form the memory address.	a 1 Gbit DRAM chip organized as 12 and the DRAM chip are square. The co Using the organization approach disc ress all answers in decimal (not power.	olumn number and offset concatenate sussed in class, answer the following
total number of bits i	in address	
number of colum	mns	
column decoder requir	red (<i>n</i> to <i>m</i>)	
number of words per	r column	
type of mux required	d (<i>n</i> to <i>m</i>)	
number of address lines in	column offset	
Part B (10 points) Consider million address by 16-bit wor	a memory system with 128 million a rd memory DRAM chip.	addresses of 64-bit words using a 4
word address lines for mem	nory system	
chips needed in one l	bank	
banks for memory sy	stem	
memory decoder required	d (<i>n</i> to <i>m</i>)	
DRAM chips requi	red	

Part C (8 points) Design a **128 million address by 4 bit** memory system with **32M x 4** memory chips. *Label all busses and indicate bit width*. Assume R/W is connected and not shown here. Use a bank decoder if necessary. Be sure to include the address bus, data bus, and MSEL.

ECE 2030 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Three	21 April 2010

Problem 2 (3 parts, 26 points)

Datapath Elements


Part A (6 points) Suppose the following inputs (in hexadecimal) are applied to the 32-bit barrel shifter used in the datapath. Determine the output (in hexadecimal). Assume the shift amount is drawn from the 16-bit immediate value.

Shift Type	Shift Amount	Input Value	Output Value
logical	0x0008	EB25ACE7	
arithmetic	0x0010	BAC19317	
rotate	0xFFF4	DE2FAB36	

Part B (8 points) For each bitwise logical function specification below, determine the LF code (in hexadecimal) to correctly program the logical unit.

ΧY	Out	log	gical function	LF
0 0	LF ₀		$Y + \overline{X}$	
1 0	LF ₁		X	
0 1	LF ₂		$X \oplus Y$	
1 1	LF ₃		$\overline{X \cdot Y}$	

Part C (12 points) Given the following finite state diagram, fill in the state table below.

S 1	S0	H/M	NS ₁	NS ₀	Out	S 1	S0	H/M	NS ₁	NS ₀	Out
0	0	0				1	0	0			
0	0	1				1	0	1			
0	1	0				1	1	0			
0	1	1				1	1	1			

Give the simplified Boolean expression for computing **Out** in terms of the current state and the input.

Out = _____

ECE 2030 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Three	21 April 2010

Problem 3 (3 parts, 26 points)

Microcode

Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values, except memory addresses, in hexadecimal notation. Use 'X' when a value is don't cared. For maximum credit, complete the description field. In each part, modify only registers 7 & 8.

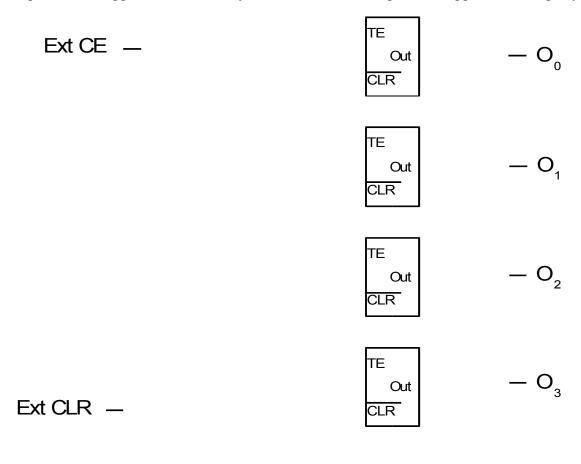
Pa	rt A	(5 p	poin	ts)				F	R ₇ =($R_8^{}-$	-15)/	512					
#	X	Y	Ζ	rwe	im	im va	аи	<u>s</u> /	lu	lf	su	st	ld	st	<u>r/</u>	msel	description
					en		en	а	en		en		en	en	W		
1																	
2																	
3																	

Part B (15 points) Compute mem[4000] \oplus R_3 and store the result in mem[4004]. \oplus means bitwise logical XOR.

#	X	Y	Ζ	rwe	im en	im va	au en	$\frac{s}{a}$	lu en	lf	su en	st	ld en	st en	$\frac{r}{w}$	msel	description
1							en		en		en		en	en			
2																	
3																	
4																	
5																	
6																	

Pa	rt C	(6 p	ooin	ts)				K	R ₇ =1	$8 \cdot R$	8 (mul	tiply	R8 b	y 18)	
#	X	Y	Ζ	rwe	im en	im va	au en	$\frac{s}{a}$	lu en	lf	su en	st	ld en	st en	$\frac{r}{w}$	msel	description
					en		en	u	en		en		en	en	VV		
1																	
2																	
3																	
4																	

ECE 2030 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Three	21 April 2010


Problem 4 (2 parts, 18 points)

Part A (8 points) Design a toggle cell using *two transparent latches, two 2 to 1 muxes, and one inverter*. Your toggle cell should have an active high toggle enable input **TE**, and an active low clear input \overline{CLR} , clock inputs Φ_1 and Φ_2 , and an output **Out**. The \overline{CLR} signal has precedence over **TE**. Label all signals. Also complete the behavior table for the toggle cell.

TE	\overline{CLR}	CLK	Out
0	0	$\uparrow \downarrow$	
1	0	$\uparrow \downarrow$	
0	1	$\uparrow \downarrow$	
1	1	↑↓	

Counters

Part B (10 points) Now combine these toggle cells to build a **divide by eleven** counter. Your counter should have an external clear, external count enable, and four count outputs O_3 , O_2 , O_1 , O_0 . Use any basic gates (AND, OR, NAND, NOR, XOR & NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design must support multi-digit systems.

