ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Building Blocks

Problem 1 (3 parts, 22 points)

Part A (6 points) Implement a 1 to 2 demultiplexor with pass gates and inverters. Be sure to label all inputs and outputs.

Part B (8 points) Suppose the circuit below has the following input priority: $I_2 > I_3 > I_0 > I_1$. Complete the truth table by filling in the input values that would produce the given outputs and derive a simplified expression for O_1 .

	I_3	I_2	I_1	Io	V	O_1	<i>O</i> ₀
4					0	Х	Х
$ \begin{array}{c} 1_{0} \\ \hline 1_{1} \\ \hline 1_{2} \\ \hline 0_{1} \\ \hline 0_{1} \\ \hline 0_{1} \\ \hline \end{array} $					1	0	0
			-		1	0	1
-I3 de					1	1	0
					1	1	1

*O*₁ =

Part C (8 points) Which building block does the following circuit implement? Label all inputs and outputs by filling in the squares.

Problem 2 (3 parts, 28 points)

Number Systems

Part A (10 points) Convert the following notations:

binary notation	decimal notation	
1010 1100.		
	6.6875	
101 1111.101		
hexadecimal notation	octal notation	
	243.54	
5F3.DC		

Part B (12 points) For the 32 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer		
(32 bits) . (0 bits)		
signed fixed-point		
(24 bits) . (8 bits)		
signed fixed-point		
(28 bits) . (4 bits)		
signed fixed-point		
(16 bits) . (16 bits)		

Part C (6 points) A 24 bit floating point representation has a 15 bit mantissa field, a 8 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2
What is the smallest value that can be represented (closest to zero)?	2

How many decimal significant figures are supported?

ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010
Problem 3 (3 parts, 24 points)		Adding & Subtracting

Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **six bit unsigned** and **six bit two's complement** representations.

2	$101101 \\ + 10111$	1110 + 10101	11001 - 111000	110100 - 10010
result				
unsigned				
error?				
signed				
error?				

Part B (4 points) Complete the truth table below for a full adder.

Α	В	C _{in}	Cout	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Part C (8 points) Implement the full adder using only NAND, XOR, and inverter gates. Label inputs A, B, and C_{in} . Label outputs C_{out} and Sum.

ECE 2030B 1:00pm	Computer Engineering	Spring 2010
4 problems, 5 pages	Exam Two	10 March 2010

Problem 4 (4 parts, 26 points)

Registers and Latches

Part A (6 points) Implement a transparent latch using gates of any type (e.g., AND, inverter, pass gates), but use the minimum number of transistors. Label the inputs **In** and **En**, and output **Out**.

Part B (7 points) Design an RS latch using NOR gates only. Label inputs R and S. Label outputs OUT and \overrightarrow{OUT} . Do not attempt to employ mixed logic notation. Also complete the truth table.

nly.	R	S	OUT	OUT
the	0	0		
	0	1		
	1	0		
	1	1		

S ——

Part C (5 points) Expand the RS latch to an implementation of a two-phase non-overlapping clock, generated from an input signal **In** that is a periodic square wave. Use only an RS latch and basic gates (AND, OR, NAND, NOR, and inverters). Label the input **In** and the outputs F1 and F2.

– Out

Out

Part D (8 points) Assume the following signals are applied to a register with write enable. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Assume Out is initially zero*.

