ECE 2030 12:00pm	Computer Engineering	Spring 2009
5 problems, 5 pages	Final Exam Solutions	1 May 2009

Problem 1 (4 parts, 32 points)

Implementation Bonanza

For each part implement the specified device. Label all inputs and outputs.

Part A (8 points) Implement the expression below using N and P type switches.

Part B (8 points) Implement the expression in mixed logic notation using NAND gates. $OUT_y = \overline{A} \cdot B + (\overline{C + \overline{D}})$

Part C (8 points) Implement a 2 to 4 decoderPartwith enable using basic gates.two

Part D (8 points) Write a POS expression for a two-input XOR (odd parity) using maxterms.

Α	В	A XOR B
0	0	0
1	0	1
0	1	1
1	1	0

$$Out = (A+B) \cdot (\overline{A}+\overline{B})$$

ECE 2030 12:00pm	Computer Engineering	Spring 2009
5 problems, 5 pages	Final Exam Solutions	1 May 2009

Problem 2 (6 parts, 32 points)

Alien Software

SETI has just received an interesting message from deep space. While the comments are written in an alien tongue, they appear to write programs in MIPS assembly. Intergalactic scientists have only been able to decode the register assignments. Computer engineers must take it from there.

```
# INPUTS: $1= num elements, $2= array A pointer, $3= array B pointer,
# OUTPUT: $6=result, WORKING: $4= InA/diff, $5= InB/pred,
```

#	label	instruction	comment
L1	WhatsIt:	sub \$6, \$6, \$6	<pre># clear max difference</pre>
L2	Loop:	lw \$4, (\$2)	# load A element
L3		lw \$5, (\$3)	# load B element
L4		sub \$4, \$4, \$5	<pre># compute difference</pre>
L5		slt \$5, \$4, \$0	<pre># if difference >= 0</pre>
L6		beq \$5, \$0, Skip1	# then skip
L7		sub \$4, \$0, \$4	<pre># otherwise negate</pre>
L8	Skip1:	slt \$5, \$6, \$4	<pre># if MaxDif >= difference</pre>
L9		beq \$5, \$0, Skip2	# then skip
L10		add \$6, \$4, \$0	<pre># otherwise update MaxDif</pre>
L11	Skip2:	addi \$2, \$2, 4	# increment A ptr
L12		addi \$3, \$3, 4	<pre># increment B ptr</pre>
L13		addi \$1, \$1, -1	# decrement element count
L14		bne \$1, \$0, Loop	<pre># loop if not done</pre>
L15		jr \$31	<pre># return to caller</pre>

Part $\overline{A} - \overline{E}$ (26 points) Decode the abstract purpose of code in terms of the defined variable names. Don't transliterate instructions to words.

A: What does L1 accomplish?	B: What math function do L5-L7 implement?
It initializes Result to O	absolute value
C: Why is Result updated (in terms of InA, InB)?	D: What is the branch offset in L14 (in bytes)?
InA - InB is greater than the current maximum difference.	-52 bytes (-13 instructions)
E: What does the overall function compute?	

This function finds the largest difference in corresponding value in two equal sized arrays.

Part F (6 points) Another routine calls WhatsIt below. Add missing instructions to preserve and restore its return address on the stack. Recall that \$29 is the stack pointer.

label	instruction	comment				
	addi \$29, \$29, -4	# push return address				
	sw \$31, (\$29)	# on stack				
	jal WhatsIt	# call WhatsIt				
	lw \$31, (\$29)	# pop return address				
	addi \$29, \$29, 4	# off stack				

ECE 2030 12:00pm	Computer Engineering	Spring 2009
5 problems, 5 pages	Final Exam Solutions	1 May 2009

Problem 3 (3 parts, 24 points)

Agents changed the matrix

Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.

Part B (8 points) Consider four different function definitions below. The symbolic value **A** is presented at its input. The control input and resulting out are shown in the truth table. Name the *gate, building block, or storage device* that implements each definition.

2	transparent latch	3	NAND	4	AND	5	XOR
---	----------------------	---	------	---	-----	---	-----

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic values X and Y are presented at its inputs along with a two-phase clock. Complete the truth table and give its functional name.

It's a: toggle cell

ECE 2030 12:00pm	Computer Engineering	Spring 2009
5 problems, 5 pages	Final Exam Solutions	1 May 2009

Problem 4 (2 parts, 28 points)

-

5 2 3 2

7 1 2 X

Х

Х

Х

Х

x o

Microcode

Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values in hexadecimal notation. Use 'X' when a value is don't cared. For maximum credit, complete the description field.

Pa	rt A	A (14 points) $R_7 = \frac{3 \times R_5}{16} - 256 \times R_6$ Modify only R ₅ , R ₆ and R ₇ .								R ₆ and R ₇ .							
#	X	Y	Ζ	rwe	im en	im va	au en	- a /s	lu en	lf	su en	st	ld en	st en	r/ -w	msel	description
1	5	5	7	1	0	×	1	0	0	X	0	x	0	0	×	0	R7 🗆 R5 + R5
2	7	7	5	1	0	×	1	0	0	х	0	x	0	0	×	0	R7 🗆 R7 + R5
3	7	X	7	1	1	4	0	x	0	x	1	1	0	0	×	0	R7 □ R7 >> 4
4	6	X	6	1	1	FFF8	0	x	0	X	1	1	0	0	×	0	R6 □ R6 << 8
5	7	6	7	1	0	×	1	1	0	х	0	x	0	0	X	0	R7 🗆 R7 - R6
6																	
7																	

Part B (14 points) Write a microcode sequence that loads a 32 bit word from memory location 0x4000, unpacks and averages two 15 bit unsigned values (A and B), and then stores the result back to memory location 0x4000. Assume the most significant two bits of the register are zero. **Modify only R₁, R₂, and R₃.**

- an	., .				14 14,50													
			0	0		A								В				
			31	30	29						15	14			5	0		
X	Y	Ζ	rwe	im en	im va	au en	- a /s	lu en	lf	su en	st	ld en	st en	r/ -w	msel	description		
X	x	1	1	1	4000	0	x	1	С	0	x	0	0	x	0	R1 🗆 0x4000		
1	X	2	1	0	x	0	x	0	×	0	x	1	0	1	1	R2 🗆 mem[R1]		
2	x	3	1	1	7FFF	0	x	1	8	0	x	0	0	x	0	R3 🗆 R2 & 0x7FFF		
2	x	2	1	1	F	0	x	0	x	1	0	0	0	x	0	R2 □ R2 >> 15		

Х

Х

x o

Х

Х

Х

Х

R2 🗆 R2 + R3

R2 □ R2 >> 1

mem[R1] 🗆 R2

ECE 2030 12:00pm	Computer Engineering	Spring 2009
5 problems, 5 pages	Final Exam Solutions	1 May 2009

Problem 5 (4 parts, 40 points)

This and That

Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

0 0000	000 0000	000 0000	000 0000 0000 0000	
opcode	dest. reg.	source 1 reg.	immediate value	
What is the maximum number of opcodes?			2 ⁵ = 32	
What is the numbe	er of registers?		2 ⁷ = 128	
What is the range	of the signed immediate	value?	2 ¹⁵ = ±16K	

Part B (9 points) List three differences between a branch and a jump in the MIPS ISA.

1: Branches are conditional; jumps are unconditional.

2: Branch offsets are r	elative, jump targets are absolute.	
2. Dranah ranaa 122KT	120Khutadi jump manag O 64M T O	256 11 10 10 10

3: Branch range ±32K I, ±128Kbytes; jump range 0-64M I, 0-256Mbytes

Part C (12 points) For 32 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (32 bits) . (0 bits)	4 billion	1
signed fixed-point (28 bits) . (4 bits)	128 million	1/16
signed fixed-point (25 bits). (7 bits)	16 million	1/128
signed fixed-point (21 bits). (11 bits)	1 million	1/2K

Part D (10 points) Consider a memory system with **256 million addresses** of **8 byte words** using DRAM chips organized as **16 million** addresses by **32 bit words**.

log2(256M) = 28	
8 bytes / 4 bytes (32 bits) = 2 chips	
256M / 16M = 2 ⁸ /2 ⁴ = 2 ⁴ = 16 banks	
4 to 16	
256M × 8 = 2 ²⁸ × 2 ³ = 2 ³¹ = 2GBytes	