Problem 1 (3 parts, 24 points)
Building Blocks
Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.

This wacky circuit is a

\qquad

Part B (8 points) Consider four different building block definitions below. The symbolic value A is presented at its input. The control input and resulting out are shown in the truth table. Name the logical gate or gates that implement each definition.

$A-$| IN
 O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| In | C | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | A | \bar{A} |
| | Z_{0} | | | |

(1) AND (2) XOR (3) NOR (4) Pass \& NOT

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic value A is presented at its input. Complete the truth table and give its functional name.

Problem 2 (3 parts, 28 points)
Part A (10 points) Convert the following notations:

binary notation	decimal notation
10101010.	$128+32+8+2=170$
01010101.1001	$64+16+4+1+.5+.0625=85.5625$
11111111.1111	255.9375
octal notation	hexadecimal notation
5755.7	$101111101101.1110=$ BED.E
33.33	$00011011.01101100=1$ B. $6 C$

Part B (12 points) For the 24 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer $(24$ bits $)$. 0 bits $)$	16 M	1
signed fixed-point $(18$ bits) . (6 bits)	128 K	$1 / 64$
signed fixed-point (15 bits) . (9 bits)	16 K	$1 / 512$
signed fixed-point $(12$ bits) . (12 bits)	2 K	$1 / 4 \mathrm{~K}$

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit exponent field, and one sign bit.
What is the largest value that can be represented (closest to infinity)? 2^{511}
What is the smallest value that can be represented (closest to zero)? 2^{-512}
How many decimal significant figures are supported? 11

Problem 3 (3 parts, 24 points)
Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned fixed-point and six bit two's complement fixed-point representations.

	111.010	11.111	100.000	10.101
	+111.011	$\begin{array}{r}11.001 \\ +\quad 0.001 \\ \hline\end{array}$	-10.001	-101.010
result	110.101	100.000	1.111	101.011
unsigned error?	yes	no	no	yes
signed error?	no	yes	yes	yes

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S . Add extra digital logic to support subtraction as well as addition. Label inputs $\mathrm{X}_{3}, \mathrm{X}_{2}$, $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}, \overline{A D D} /$ SUB and outputs $\mathrm{Z}_{3}, \mathrm{Z}_{2}, \mathrm{Z}_{1}, \mathrm{Z}_{0}$.

Part C (6 points) Write two Boolean expressions indicating signed two's compliment addition and subtraction overflow using inputs X_{3}, Y_{3}, Z_{3}. These SOP expressions should be true when overflow occurs.

$$
\begin{aligned}
\text { addition overflow }= & \mathrm{X}_{3} \cdot \mathrm{Y}_{3} \cdot \overline{\mathrm{Z}_{3}}+\overline{\mathrm{X}_{3}} \cdot \overline{\mathrm{Y}_{3}} \cdot \mathrm{Z}_{3} \\
\text { subtraction overflow }= & \mathrm{X}_{3} \cdot \overline{\mathrm{Y}_{3}} \cdot \overline{\mathrm{Z}_{3}}+\overline{\mathrm{X}_{3}} \cdot \mathrm{y}_{3} \cdot \mathrm{Z}_{3}
\end{aligned}
$$

Problem 4 (3 parts, 24 points)
"Register your knowledge"
Part A (8 points) Implement a 2 to 1 multiplexer using only pass gates and inverters. Label all inputs $\left(\mathrm{IN}_{0}, \mathrm{IN}_{1}, \mathrm{~S}\right)$ and output (Out).

Part B (10 points) Implement a register below using needed muxes, latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_{1} \Phi_{2}$ cycle; so the output should be the value at the end of a cycle (with the given inputs).

In	WE	RE	$C l k$	Out
A	0	0	$\uparrow \downarrow$	Z_{o}
A	1	0	$\uparrow \downarrow$	Z_{o}
A	0	1	$\uparrow \downarrow$	Q_{0}
A	1	1	$\uparrow \downarrow$	A

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal Out. Draw a vertical line where In is sampled. Draw crosshatch where Out is unknown.

