ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two Solutions	4 March 2009

Problem 1 (3 parts, 24 points)

Building Blocks

Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.

Part B (8 points) Consider four different building block definitions below. The symbolic value **A** is presented at its input. The control input and resulting out are shown in the truth table. Name the *logical gate or gates* that implement each definition.

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic value **A** is presented at its input. Complete the truth table and give its functional name.

Problem 2 (3 parts, 28 points)

Number Systems

Part A (10 points) Convert the following notations:

binary notation	decimal notation	
1010 1010.	128+32+8+2 = 170	
0101 0101.1001	64+16+4+1+.5+.0625 = 85.5625	
1111 1111.1111	255.9375	
octal notation	hexadecimal notation	
5755.7	1011 1110 1101.1110 = BED.E	
33.33	0001 1011.0110 1100 = 1B.6 <i>C</i>	

Part B (12 points) For the 24 bit representations below, determine the most positive value and the step size (difference between sequential values). **All answers should be expressed in decimal notation**. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer (24 bits) . (0 bits)	16M	1
signed fixed-point (18 bits). (6 bits)	128K	1/64
signed fixed-point (15 bits). (9 bits)	16K	1/512
signed fixed-point (12 bits). (12 bits)	2K	1/4K

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2 ⁵¹¹
What is the smallest value that can be represented (closest to zero)?	2 ⁻⁵¹²
How many decimal significant figures are supported?	11

ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two Solutions	4 March 2009

Problem 3 (3 parts, 24 points)

"Math is easy"

Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **six bit unsigned fixed-point** and **six bit two's complement fixed-point** representations.

	111.010	11.111	100.000	10.101
	+111.011	+ 0.001	- 10.001	<u>- 101.010</u>
result	110.101	100.000	1.111	101.011
unsigned error?	yes	no	no	yes
signed error?	no	yes	yes	yes

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S. Add extra digital logic to support subtraction as well as addition. Label inputs X_3 , X_2 , X_1 , X_0 , Y_3 , Y_2 , Y_1 , Y_0 , \overline{ADD} / SUB and outputs Z_3 , Z_2 , Z_1 , Z_0 .

Part C (6 points) Write two Boolean expressions indicating signed two's compliment addition and subtraction overflow using inputs X_3 , Y_3 , Z_3 . These SOP expressions should be true when overflow occurs.

addition overflow =
$$X_3 \cdot Y_3 \cdot \overline{Z_3} + \overline{X_3} \cdot \overline{Y_3} \cdot Z_3$$

subtraction overflow = $X_3 \cdot \overline{Y_3} \cdot \overline{Z_3} + \overline{X_3} \cdot Y_3 \cdot Z_3$

ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two Solutions	4 March 2009

Problem 4 (3 parts, 24 points)

"Register your knowledge"

Part A (8 points) Implement a 2 to 1 multiplexer using only pass gates and inverters. Label all inputs (IN_0, IN_1, S) and output (Out).

Part B (10 points) Implement a register below using needed muxes, latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_1 \Phi_2$ cycle; so the output should be the value at the end of a cycle (with the given inputs).

In	WE	RE	Clk	Out
Α	0	0	↑↓	Zo
Α	1	0	$\uparrow \downarrow$	Z₀
Α	0	1	↑↓	Q°
Α	1	1	↑↓	A

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where Out is unknown*.

