Problem 1 (3 parts, 30 points)
Incomplete Circuits
The three parts below contain (A) a pull up network, (B) a pull down network, and (C) an expression to be implemented. For (A) and (B), complete the missing complementary switching networks so the circuit contains no floats or short and write the Boolean expression computed by the completed circuit. For (C), design the entire switching network. Assume the inputs and their complements are available.

OUTx =

$$
\bar{A} \cdot D+(B+C) \cdot(\bar{E}+\bar{F})
$$

OUTy =

$$
A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}
$$

OUTz =

$$
A+\bar{B}+\bar{C} \cdot \bar{D}
$$

Part A (12 points) Transform each of the following Boolean expressions to a form where they are ready for switch level implementation (i.e., there should only be bars over input variables, not over operations). The behavior of the expression should remain unchanged. Do not

implement.

$$
O U T_{X}=\overline{\overline{\bar{A}} \cdot B}+\bar{C} \cdot(D+\bar{E}) \quad=\bar{A} \cdot B \cdot \overline{\bar{C}} \cdot(D+\bar{E})=\bar{A} \cdot B \cdot(C+\overline{D+\bar{E}})=\bar{A} \cdot B \cdot(C+\bar{D} \cdot E)
$$

$$
O U T_{Y}=\overline{A \cdot \overline{B \cdot \overline{C \cdot \bar{D}}}} \quad=\bar{A}+B \cdot \overline{C \cdot \bar{D}}=\bar{A}+B \cdot(\bar{C}+D)
$$

Part B (8 points) Derive a canonical sum of products (using minterms) and a product of sums (using maxterms) expression for the truth table below.

A	B	C	$\mathrm{F}_{(\mathrm{A}, \mathrm{B}, \mathrm{C})}$
0	0	0	0
1	0	0	0
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	1

$\mathrm{SOP}_{(\text {MINTERMS })}$	$=\frac{\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot C}{(A+B+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C) \cdot(A+\bar{B}+\bar{C})}$
$\operatorname{POS}_{(\text {MAXTERMS })}$	$=\frac{(A)}{}$

Problem 3 (3 parts, 28 points)
Karnaugh Maps
Part A (8 points) Using the following Karnaugh map definition of a behavior, specify each don’t care and identify prime implicants for a simplified product of sums expression. List all PIs.

simplified POS expression

$(\bar{A}+\bar{D}) \cdot(B+C)$

Part B (8 points) For the follow behavior (expressed in map form), derive a simplified sum of products expression using a Karnaugh Map. Circle and list all prime implicants, indicating which are essential.

	essential?	
prime implicants	yes	no
$\overline{\mathrm{A} \cdot \overline{\mathrm{B}}}$	\boxtimes	\square
$\mathrm{A} \cdot \mathrm{B}$	\boxtimes	\square
$\overline{\mathrm{C} \cdot \mathrm{D}}$	\boxtimes	\square
$\mathrm{B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}$	\square	\boxtimes
$\overline{\mathrm{A} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}}$	\square	\boxtimes
	\square	\square
	\square	\square
	\square	\square

simplified SOP expression
$\bar{A} \cdot \bar{B}+\bar{C} \cdot D+A \cdot B+B \cdot C \cdot \bar{D}=\bar{A} \cdot \bar{B}+\bar{C} \cdot D+A \cdot B+\bar{A} \cdot C \cdot \bar{D}$

Part C (12 points) For the follow expression, derive a simplified product of sums expression using a Karnaugh Map. Circle and list all prime implicants, indicating which are essential.

$$
\text { Out }=(A+B+\bar{C}) \cdot(B+C+D) \cdot(\bar{A}+C+\bar{D}) \cdot(B+C+\bar{D})
$$

simplified POS expression

$$
(A+B) \cdot(B+C) \cdot(\bar{A}+C+\bar{D})
$$

Problem 4 (2 parts, 22 points)
Mixed Logic Design
Part A (10 points) Implement the following expression using multi-input NAND gates and inverters. Minimize the total transistors (switches) required. Use proper mixed logic design technique. Do not simplify the expression.

$$
O U T_{X}=\overline{(A \cdot B+\bar{C}) \cdot \bar{D}}
$$

Part B (12 points) Implement the following two expressions using multi-input NOR gates and inverters. Minimize the total transistors (switches) required. Use proper mixed logic design technique. Do not simplify the expressions.

$$
O U T_{Y}=\bar{A} \cdot(B+\bar{C}) \quad O U T_{Z}=\overline{\overline{B+\bar{C}}+D}
$$

> \# transistors =
$3 \times 4 t+1 \times 2 t=14 t$

