Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. Good Luck!

Your Name (please print)

Problem 1 (4 parts, 32 points)
For each part implement the specified device. Label all inputs and outputs.
Part A (8 points) Implement the expression below using N and P type switches.

$$
O U T_{X}=A \cdot \bar{B} \cdot C+\bar{D}+E
$$

Part B (8 points) Implement the expression in mixed logic notation using NAND gates.

$$
O U T_{Y}=\bar{A} \cdot B+(\overline{C+\bar{D}})
$$

Part C (8 points) Implement a 2 to 4 decoder with enable using basic gates.

Part D (8 points) Write a POS expression for a two-input XOR (odd parity) using maxterms.

Problem 2 (6 parts, 32 points)
SETI has just received an interesting message from deep space. While the comments are written in an alien tongue, they appear to write programs in MIPS assembly. Intergalactic scientists have only been able to decode the register assignments. Computer engineers must take it from there.

```
# INPUTS: $1= num elements, $2= array A pointer, $3= array B pointer,
# OUTPUT: $6=result, WORKING: $4= InA/diff, $5= InB/pred,
```

\#	label	instruction	comment
L1	WhatsIt:	sub \$6, \$6, \$6	
L2	Loop:	lw \$4, (\$2)	
L3		lw \$5, (\$3)	
L4		sub \$4, \$4, \$5	
L5		slt \$5, \$4, \$0	
L6		beq \$5, \$0, Skip1	
L7		sub \$4, \$0, \$4	
L8	Skip1:	slt \$5, \$6, \$4	
L9		beq \$5, \$0, Skip2	
L10		add \$6, \$4, \$0	
L11	Skip2:	addi \$2, \$2, 4	
L12		addi \$3, \$3, 4	
L13		addi \$1, \$1, -1	
L14		bne \$1, \$0, Loop	
L15		jr \$31	

Part A - E (26 points) Decode the abstract purpose of code in terms of the defined variable names. Don't transliterate instructions to words.

A: What does L1 accomplish?	B: What math function do L5-L7 implement?			
C: Why is Result updated (in terms of $\operatorname{In} A$, InB)?	D: What is the branch offset in L14 (in bytes)?			
E: What does the overall function compute?				

Part F (6 points) Another routine calls WhatsIt below. Add missing instructions to preserve and restore its return address on the stack. Recall that $\$ 29$ is the stack pointer.

label	instruction	comment
		$\#$ push return address ...
	jal WhatsIt	$\#$... on stack
		$\#$ call WhatsIt
	$\#$ pop return address ...	
	$\#$ off stack	

Problem 3 (3 parts, 24 points)
Agents changed the matrix
Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.

This wacky circuit is a \qquad
Part B (8 points) Consider four different function definitions below. The symbolic value A is presented at its input. The control input and resulting out are shown in the truth table. Name the gate, building block, or storage device that implements each definition.

In	C	(1)	(2)	(3)	(4)
A	0	Q_{0}	1	0	A
A	1	A	\bar{A}	A	\bar{A}

(1)
(2)
(3)
(4)

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic values X and Y are presented at its inputs along with a two-phase clock. Complete the truth table and give its functional name.

x	y	$C l k$	Out
0	0	$\uparrow \downarrow$	
1	0	$\uparrow \downarrow$	
0	1	$\uparrow \downarrow$	
1	1	$\uparrow \downarrow$	

It's a:

Problem 4 (2 parts, 28 points)
Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values in hexadecimal notation. Use ' X ' when a value is don't cared. For maximum credit, complete the description field.
Part A (14 points) $\quad R_{7}=\frac{3 \times R_{5}}{16}-256 \times R_{6} \quad$ Modify only $\mathbf{R}_{5}, \mathbf{R}_{6}$ and \mathbf{R}_{7}.

$\#$	X	Y	Z	rwe	im en	im va	au en	$-a$ /s	lu en	lf	su en	st	ld en	st en	r -w	msel	description
1																	
2																	
3																	
4																	
5																	
6																	
7																	

Part B (14 points) Write a microcode sequence that loads a 32 bit word from memory location 0×4000, unpacks and averages two 15 bit unsigned values (A and B), and then stores the result back to memory location 0×4000. Assume the most significant two bits of the register are zero. Modify only $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}$, and \mathbf{R}_{3}.

\#	X	Y	Z	rwe	im $\begin{gathered}\text { im } \\ \text { en }\end{gathered}$	im va	au en	$-a$ /	$1 u$ $e n$	If	Su	${ }^{\text {st }}$	$1 d$ $e n$	st en	$r /$ -w	msel	description
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	

Problem 5 (4 parts, 40 points)
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

00000	0000000	0000000	000000000000000
opcode	dest. reg.	source 1 reg.	immediate value

What is the maximum number of opcodes?
What is the number of registers?
What is the range of the signed immediate value?
Part B (9 points) List three differences between a branch and a jump in the MIPS ISA.
\qquad
Part C (12 points) For 32 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer		
(32 bits) . (0 bits)		
signed fixed-point		
(28 bits) . (4 bits)		
signed fixed-point		
(25 bits) . (7 bits)		
signed fixed-point		
(21 bits) . (11 bits)		

Part D (10 points) Consider a memory system with 256 million addresses of $\mathbf{8}$ byte words using DRAM chips organized as $\mathbf{1 6}$ million addresses by $\mathbf{3 2}$ bit words.
word address lines for memory system chips needed in one bank banks for memory system memory decoder required (n to m) total memory system size (in bytes)

instruction	example	meaning
add	add \$1,\$2,\$3	\$1 = \$2 + \$3
subtract	sub \$1, \$2,\$3	\$1 = \$2 - \$3
add immediate	addi \$1,\$2,100	\$1 = \$2 + 100
multiply	mul \$1,\$2,\$3	\$1 = \$2 * \$3
divide	div \$1,\$2,\$3	\$1 = \$2 / \$3
and	and \$1,\$2,\$3	\$1 = \$2 \& \$3
or	or \$1,\$2,\$3	\$1 = \$2 \| \$3
xor	xor \$1,\$2,\$3	\$1 $=$ \$2 xor \$3
and immediate	andi \$1,\$2,100	\$1 = \$2 \& 100
or immediate	ori \$1,\$2,100	\$1 = \$2 \| 100
xor immediate	xori \$1,\$2,100	\$1 = \$2 xor 100
shift left logical	sll \$1,\$2,5	\$1 = \$2 << 5 (logical)
shift right logical	srl \$1,\$2,5	\$1 $=$ \$2 >> 5 (logical)
shift left arithmetic	sla \$1,\$2,5	\$1 = \$2 << 5 (arithmetic)
shift right arithmetic	sra \$1,\$2,5	\$1 = \$2 >> 5 (arithmetic)
load word	lw \$1, (\$2)	\$1 = memory [\$2]
store word	sw \$1, (\$2)	memory [\$2] = \$1
load upper immediate	lui \$1,100	\$1 = $100 \times 2{ }^{16}$
branch if equal	beq \$1,\$2,100	if (\$1 = \$2), PC = PC + 4 + (100*4)
branch if not equal	bne \$1,\$2,100	if (\$1 \ddagger \$2), PC = PC + $4+(100 * 4)$
set if less than	slt \$1, \$2, \$3	if (\$2 < \$3), \$1 = 1 else \$1 = 0
set if less than immediate	slti \$1, \$2, 100	if (\$2 < 100), \$1 = 1 else \$1 = 0
jump	$j 10000$	PC = 10000
jump register	jr \$31	PC = \$31
jump and link	jal 10000	\$31 = PC + 4; PC = 10000

