Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. Good Luck!

Your Name (please print)


Problem 1 (3 parts, 24 points)
Building Blocks
Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.


This wacky circuit is a $\qquad$
Part B (8 points) Consider four different building block definitions below. The symbolic value $A$ is presented at its input. The control input and resulting out are shown in the truth table. Name the logical gate or gates that implement each definition.

$A-$| IN | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C$ |  |$-$| In | $C$ | $(1)$ | $(2)$ | $(3)$ |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | 0 | 0 | $A$ | $\bar{A}$ |
| $A$ | 1 | $A$ | $\bar{A}$ | 0 |

## (1)

(2)
(3)
(4)

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic value $A$ is presented at its input. Complete the truth table and give its functional name.


Problem 2 (3 parts, 28 points)
Part A (10 points) Convert the following notations:

| binary notation | decimal notation |
| :---: | :--- |
| 10101010. |  |
| 01010101.1001 | hexadecimal notation |
| 11111111.1111 |  |
| octal notation |  |
| 5755.7 |  |
| 33.33 |  |

Part B (12 points) For the 24 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

| representation | most positive value | step size |
| :---: | :--- | :--- |
| unsigned integer |  |  |
| $(24$ bits $)$. 0 bits $)$ |  |  |
| signed fixed-point |  |  |
| $(18$ bits $)$. 6 bits $)$ |  |  |
| signed fixed-point |  |  |
| $(15$ bits $)$. 9 bits $)$ |  |  |
| signed fixed-point |  |  |
| $(12$ bits $) .(12$ bits $)$ |  |  |

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)? $\qquad$
What is the smallest value that can be represented (closest to zero)?
2 $\qquad$

How many decimal significant figures are supported?

Problem 3 (3 parts, 24 points)
Part A (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned fixed-point and six bit two's complement fixed-point representations.

$$
\begin{array}{rrrr}
111.010 & 11.111 & 100.000 & 10.101 \\
+111.011 & +\quad 0.001 & -10.001 & \underline{-101.010} \\
\hline
\end{array}
$$

result

| unsigned |
| :--- |
| error? |
| signed |
| error? |

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S . Add extra digital logic to support subtraction as well as addition. Label inputs $\mathrm{X}_{3}, \mathrm{X}_{2}$, $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}, \overline{A D D} /$ SUB and outputs $\mathrm{Z}_{3}, \mathrm{Z}_{2}, \mathrm{Z}_{1}, \mathrm{Z}_{0}$.


Part C (6 points) Write two Boolean expressions indicating signed two's complement addition and subtraction overflow using inputs $\mathrm{X}_{3}, \mathrm{Y}_{3}, \mathrm{Z}_{3}$. These SOP expressions should be true when overflow occurs.

$$
\text { addition overflow }=
$$

subtraction overflow $=$

Problem 4 (3 parts, 24 points)
"Register your knowledge"
Part A (8 points) Implement a 2 to 1 multiplexer using only pass gates and inverters. Label all inputs $\left(\mathrm{IN}_{0}, \mathrm{IN}_{1}, \mathrm{~S}\right)$ and output (Out).

Part B (10 points) Implement a register below using needed muxes, latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_{1} \Phi_{2}$ cycle; so the output should be the value at the end of a cycle (with the given inputs).

| In | WE | RE | CIk | Out |
| :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | $\uparrow \downarrow$ |  |
| A | 1 | 0 | $\uparrow \downarrow$ |  |
| A | 0 | 1 | $\uparrow \downarrow$ |  |
| $A$ | 1 | 1 | $\uparrow \downarrow$ |  |

$\mathrm{In}-$
— Out

WE

$\phi_{1}$
1
$\phi_{2}$

RE

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Draw crosshatch where Out is unknown.


