ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two	4 March 2009

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two	4 March 2009

Problem 1 (3 parts, 24 points)

Building Blocks

Part A (8 points) Consider the circuit below. Complete the truth table. Then state what logical function this circuit implements.

This wacky circuit is a

Part B (8 points) Consider four different building block definitions below. The symbolic value **A** is presented at its input. The control input and resulting out are shown in the truth table. Name the *logical gate or gates* that implement each definition.

In	С	1	2	3	4
A	0	0	A	A	Z。
A	1	A	Ā	0	A

1	2	3	4	

Part C (8 points) Blocks from part B are used to create a new module below. The symbolic value **A** is presented at its input. Complete the truth table and give its functional name.

Problem 2 (3 parts, 28 points)

Number Systems

Part A (10 points) Convert the following notations:

binary notation	decimal notation
1010 1010.	
0101 0101.1001	
1111 1111.1111	
octal notation	hexadecimal notation
5755.7	
33.33	

Part B (12 points) For the 24 bit representations below, determine the most positive value and the step size (difference between sequential values). **All answers should be expressed in decimal notation**. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned integer		
(24 bits) . (0 bits)		
signed fixed-point		
(18 bits) . (6 bits)		
signed fixed-point		
(15 bits) . (9 bits)		
signed fixed-point		
(12 bits) . (12 bits)		

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2 —
--	-----

What is the smallest value that can be represented (closest to zero)?

2 _____

How many decimal significant figures are supported?

ECE 2030A 10:00am	Computer Engineering	Fall 2009		
4 problems, 5 pages	Exam Two	4 March 2009		
Problem 3 (3 parts, 24 points) "Math is Part A (12 points) For each problem below, compute the operations using the rules of arit and indicate whether an overflow occurs assuming all numbers are expressed using a unsigned fixed-point and six bit two's complement fixed-point representations.				
111.010 + 111.011	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.000 10.101 .001 <u>- 101.010</u>		

result			
unsigned error?			
error?			
signed error?			
error?			

Part B (6 points) The adder below adds two four bit numbers A and B and produces a four bit result S. Add extra digital logic to support subtraction as well as addition. Label inputs X_3 , X_2 , X_1 , X_0 , Y_3 , Y_2 , Y_1 , Y_0 , \overline{ADD} / SUB and outputs Z_3 , Z_2 , Z_1 , Z_0 .

Part C (6 points) Write two Boolean expressions indicating signed two's complement addition and subtraction overflow using inputs X_3 , Y_3 , Z_3 . These SOP expressions should be true when overflow occurs.

addition overflow =

subtraction overflow =

ECE 2030A 10:00am	Computer Engineering	Fall 2009
4 problems, 5 pages	Exam Two	4 March 2009

Problem 4 (3 parts, 24 points)

In ——

"Register your knowledge"

Part A (8 points) Implement a 2 to 1 multiplexer using only pass gates and inverters. Label all inputs (IN_0 , IN_1 , S) and output (Out).

Part B (10 points) Implement a register below using needed muxes, latches, pass gates, and inverters (all in icon form). Complete the behavior table at right. Recall that the CLK signal indicates a full $\Phi_1 \Phi_2$ cycle; so the output should be the value at the end of a cycle (with the given inputs).

Part C (6 points) Assume the following signals are applied to your register. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where Out is unknown*.

