
Question 1) (20 points)
Shift these values as described, using 6 bits for each result.

1a)

000100 logical left-shift by 2:

1b)

101011 logical right-shift by 2:

1c)

000101 arithmetic left-shift by 2:

1d)

101011 arithmetic right-shift by 2:

1e)

101011 barrel right-shift by 2:

Question 2) (20 points)

Fill in the requested microcode signals needed to make the MIPS datapath implement the given instruction (just those
two signals for each instruction). If the value doesn’t matter, write ‘x’. The datapath reference is on the last page, and
can be removed.

To execute: Microcode signals:

R6 = R7 + R8
x = rwe =

R3 = R2 XOR 1
y = su_en =

R7 = MEM[R9] z =
st_en =

MEM[R7] = R9
-r/w = rwe =

Question 3) (25 points)

This is a Pokémon Silver cartridge for the Game Boy Color.
The memory chip in the lower-right of the cartridge stores the program.
It’s a 2M-word memory, which means it needs 21 address signals. But
there’s a problem: the cartridge only has 16 address pins.

To allow for more memory than the address bus can address at once, a
chip inside the cartridge called the “memory bank controller” provides
some of the address bits. The Game Boy can only "see" 16k words of
program memory at a time, but by making the memory bank controller
change its outputs, a different set of 16k words can be accessed. These
swappable chunks of memory are called “banks”.
[The diagram below might help you work through these questions]

3a) Since each bank is 16k words, how many bits
 are required to address each word inside a bank? bits

3b) If the memory chip is 2M words and it’s broken up into banks of 16k words, how many banks are there?

 banks (express your answer with k or M if needed)

3c) From your answer to 3b, how many address bits are needed to select the bank? bits

3d) Based on all that, fill in the blanks on this diagram (the rounded squares), describing the effective memory layout.
Blanks on buses are asking for bus width.

3e) The memory bank controller in Game Boy Color games could supply up to 9 bits of address. What is the maximum
program size for Game Boy Color games?

 words (express in terms of k, M, etc.)

Question 4) (10 points)

Color in the bit cells in this diagram that contain the data at address 5.

Question 5) (25 points)

BCD (binary coded decimal) is a number format where each digit of the decimal representation of a number gets
encoded into four bits. For example, since 1310 is “1” followed by “3”, it would be encoded in BCD as 00010011 (four
bits representing “1” followed by four bits representing “3”).

Write a snippet of assembly code (in “RTL” format) that converts a number between 0 and 19 into BCD. Assume that the
number is in register R1 at the beginning of the snippet, and leave the result in R1.

For example, 00000000000000000000000000010010 (1810) should become 00000000000000000000000000011000
(four bits representing “1” followed by four bits representing “8”).

Keep in mind that it only needs to work for input values 0-19.

Signal Description Signal Description

X, Y Read register addresses lf Logic function (see below)
Z Write register address su_en Shift unit enable
rwe Register write enable st Shift type (see below)
im_en Immediate enable st_en Store enable
im_va Immediate value ld_en Load enable
au_en Arithmetic unit enable -r/w Read/write memory (0=read, 1=write)
-a/s Add/subtract (0=add, 1=subtract) msel Memory select
lu_en Logic unit enable

instruction assembly RTL description

add add $d, $s, $t $d = $s + $t;
subtract sub $d, $s, $t $d = $s - $t;
add immediate addi $t, $s, imm $t = $s + imm;
and and $d, $s, $t $d = $s AND $t;
or or $d, $s, $t $d = $s OR $t;
xor xor $d, $s, $t $d = $s XOR $t;
and immediate andi $t, $s, imm $t = $s AND imm;
or immediate ori $t, $s, imm $t = $s OR imm;
xor immediate xori $t, $s, imm $t = $s XOR imm;
shift left logical sll $d, $t, a $d = $t SLL a;
shift right logical srl $d, $t, a $d = $t SRL a;
shift left arithmetic sla $d, $t, a $d = $t SLA a;
shift right arithmetic sra $d, $t, a $d = $t SRA a;
load word lw $t, ($s) $t = MEM[$s];
store word sw $t, ($s) MEM[$s] = $t;
load upper immediate lui $t, imm $t = imm SLL 16;
load immediate li $t, imm / addi $t, $0, imm $t = imm;
branch if equal beq $s, $t, offset if $s==$t GOTO [label];
branch if not equal bne $s, $t, offset if $s!=$t GOTO [label];
set if less than slt $d, $s, $t $d = $s < $t; ($d = 1 if true, else $d = 0)
set if less than immediate slti $t, $s, imm $d = $s < imm; ($d = 1 if true, else $d = 0)
jump j target GOTO [label];
jump register jr $s PC = $s;

More lined paper if you need it, but make sure I know that there’s something here if I need to grade it.

