ECE2020 A Fall 2018 Test 1

Name: \qquad

- Only a writing implement may be used on this exam (i.e. no books, notes, or any electronics).
- If the meaning of any question is not clear, please ask for clarification.
- Partial credit can only be awarded for work shown.

Honor pledge:

On my honor, I pledge that I will neither receive nor provide improper assistance in the completion of this test. I understand and accept my responsibility as a member of the Georgia Tech Community to uphold the Honor Code at all times, and I know that I have options for reporting honor violations at osi.gatech.edu.

GTID: \qquad Signature: \qquad

Boolean Identities

Identity

$$
A+0=A
$$

$$
A \cdot 1=A
$$

Dominance

$$
A+1=1
$$

$$
A \cdot 0=0
$$

Idempotence

$$
A+A=A
$$

$$
A \cdot A=A
$$

Inverse

$$
A+\bar{A}=1
$$

$$
A \cdot \bar{A}=0
$$

Commutative

$$
A+B=B+A
$$

$$
A \cdot B=B \cdot A
$$

Associative

$$
A+(B+C)=(A+B)+C
$$

$$
A \cdot(B \cdot C)=(A \cdot B) \cdot C
$$

Distributive

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

$$
A+B \cdot C=(A+B) \cdot(A+C)
$$

Absorption
$A \cdot(A+B)=A$
$A+A \cdot B=A$
DeMorgan's
$\overline{(A+B)}=\bar{A} \cdot \bar{B}$

$$
\overline{(A \cdot B)}=\bar{A}+\bar{B}
$$

Double Complement $\overline{\bar{A}}=A$

FOIL $(A+B) \cdot(C+D)=A \cdot C+A \cdot D+B \cdot C+B \cdot D$

Disappearing opposite $A+\bar{A} \cdot B=A+B$

This page is for scratch work and will not be graded unless you tell me that something on here needs to be graded.

0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Problem 1: (20 points)

Write a Boolean expression for each of these gate schematics.

$G=$ \qquad

$G=$ \qquad

Problem 2: (10 points)
A design team created the following logic expression for a project:

$$
X=\overline{\overline{A+B \cdot C}+A \cdot D \cdot \bar{E}}+F \cdot G
$$

That logic is correct, but at the last minute, the customer added a new requirement:
"Add a new input H . If $\underline{\mathrm{H} \text { is low, output } \mathrm{X} \text { must be low, otherwise use the same logic as before" }}$
Make the simplest change possible to add the required behavior. You're welcome to either write a new expression, or just describe what you would do.

Problem 3: (25 points)
Implement the following Boolean expression in proper CMOS (N -FETs and P-FETs). Assume that inputs and their complements are available (i.e. you may use something like \bar{C} as an input to a FET if needed).

$$
F=\overline{(\bar{A} \bullet(\bar{B}+C))}+D
$$

Derive expressions for the pull-up and pull-down switch networks (p.u. and p.d.) here:
p.u. $=$ \qquad
p.d. $=$ \qquad

Problem 4: (20 points)

Manipulate the following mixed-logic schematic to implement it using only ANDs and inverters.
The same circuit is repeated here twice in case you ruin one. Please mark the one that you want graded.

Δ Mark here if you want this one graded.

Δ Mark here if you want this one graded.

Problem 5: (25 points)
Using the truth table below, create a K-map and solve for a minimal sum-of-products expression.

A	B	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1
0				

Label the rows and columns of the K-map appropriately.

$Y=$

