Problem 1 (3 parts, 24 points)
Complete each design below. Be sure to label all signals.
Part A: Define a 2 to 1 priority encoder, where $I_{1}>I_{0}$, Implement the 2 to 1 encoder using one basic gate. Only by completing the behavior table. true (non-complemented) inputs are available. Label all inputs (IN0, IN1) and outputs (Out, V).

IN_{0}	$\mathrm{I} \mathbf{N}_{1}$	V	Out
0	0	0	X
1	0	1	0
X	1	1	1

Part B: Implement a 1 to 2 demux using only pass gates and an inverter. Determine \# of switches needed.

\# switches = \qquad

Part C: Complete the truth table for even parity. Then write a sum of products (SOP) expression.

A	B	Out
0	0	1
1	0	0
0	1	0
1	1	1

$\overline{\mathrm{A} \oplus \mathrm{B}}=$ \qquad

Problem 2 (4 parts, 32 points)

Design That
Complete each design below. Be sure to label all signals.
Part A: Complete the following CMOS design. Also Part B: Implement the following expression using express its behavior.

Out $=$ \qquad \# switches = \qquad
Part C: Implement a transparent latch using only NOR and NOT gates.

Part D: Draw the state table for the following state diagram.

A	S_{1}	S_{0}	$N S_{1}$	$N S_{0}$	B
0	0	0	0	0	0
1	0	0	0	1	0
0	0	1	0	1	0
1	0	1	1	0	0
0	1	0	1	0	0
1	1	0	0	0	1

Problem 3 (3 parts, 30 points)

Part A (10 points) Design a toggle cell using transparent latches, 2to1 muxes, and inverters (use icons, labeling inputs \& outputs). Your toggle cell should have an active high toggle enable input TE, and an active low clear input $\overline{C L R}$, clock inputs Φ_{1} and Φ_{2}, and an output Out. The $\overline{\mathbf{C L R}}$ signal has precedence over TE. Also complete the behavior table for the toggle cell.

Part B (10 points) Now combine these toggle cells to build a divide by 6 counter. Your counter should have an external clear, external count enable, and three count outputs $\mathrm{O}_{2}, \mathrm{O}_{1}, \mathrm{O}_{0}$. Use any basic gates (AND, OR, NAND, NOR, \& NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design should support multi-digit systems.

Part C (10 points) Build a stopwatch that counts seconds and minutes using divide by N counters drawn below. Be sure to fill in the needed divider for seconds, tens of seconds, and minutes. Use any basic gates you require. Assume a one hertz clock is already connected.

Problem 4 (2 parts, 48 points) Microcode in Reverse
Part A (20 points) Translate this undocumented microcode fragment (in hexidecimal) to corresponding MIPS assembly instructions. Also include comments summarizing the instruction.

$\#$	X	Y	Z	rwe	im en	im va	au en	- a/s	lu en	lf	su en	st	ld en	st en	r r-w	msel
1	5	0	7	1	0	0	0	0	0	0	0	0	1	0	1	1
2	7	0	9	1	1	C	0	0	0	0	1	0	0	0	0	0
3	9	0	9	1	1	FFF	0	0	1	8	0	0	0	0	0	0
4	9	A	A	1	0	0	1	0	0	0	0	0	0	0	0	0
5	8	A	0	0	0	0	0	0	0	0	0	0	0	1	0	1

1	lw $\$ 7,0(\$ 5)$	$\# \$ 7 \leftarrow$ mem $[$ pointer \$5]
2	srl $\$ 9, \$ 7,12$	$\# \$ 9 \leftarrow \$ 7 \gg 12$
3	andi $\$ 9, \$ 9,0 \times F F F$	$\# \$ 9 \leftarrow \$ 9 \& 0 \times F F F$
4	add $\$ 10, \$ 9, \$ 10$	$\# \$ 10 \leftarrow \$ 10+\$ 9$
5	sw $\$ 10,0(\$ 8)$	$\#$ mem $[$ pointer \$8] $\leftarrow \$ 10$

Part B (28 points) Complete a recursive subroutine that computes the factorial of N. Assume N is received in $\$ 1$ and N ! is returned in $\$ 2 . \$ 29$ is the stack pointer.

label	instruction	comment
Fact:	addi \$02, \$00, 1	\# init result to 1
	slti \$03, \$01, 2	\# if $\mathrm{N}<2$
	bne \$03, \$00, Done	\# you're done
	addi \$29, \$29, -8	\# allocate stack space
	sw \$31, 4(\$29)	\# push return address
	sw \$01, 0 (\$29)	\# push N
	addi \$01, \$01, -1	\# decrement N
	jal Fact	\# call Fact (N-1)
	lw \$01, 0 (\$29)	\# pop N
	lw \$31, 4 (\$29)	\# pop return address
	addi \$29, \$29, 8	\# deallocate stack space
	mult \$01, \$02	\# N * Fact (N-1)
	mflo \$2	\# place result in \$2
Done:	jr \$31	\# return to caller

Problem 5 (4 parts, 39 points)
"Random Bits"
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

00000	0000	0000	00000000000000000000
opcode	dest. reg.	source 1 reg.	immediate value

What is the maximum number of opcodes?

$2^{5}=32$
$2^{4}=16$
$2^{20}= \pm 512 K$

Part B (9 points) For the representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
signed integer $(15$ bits $) .(0$ bits $)$	$2^{15}=16 \mathrm{~K}$	1
unsigned fixed- point	$2^{10}=1024 \approx 1 \mathrm{~K}$	$1 / 32$
$(10$ bits $) .(5$ bits $)$	$15999 / 1000$	$1 / 1 \mathrm{~K}=.001$
signed fixed-point $(5$ bits $) .(10$ bits $)$		

Part C (9 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit exponent field, and one sign bit. Express all answers in decimal. Fractions (e.g., 3/8) are okay.

What is the largest value that can be represented (closest to infinity)?
32K

What is the smallest value that can be represented (closest to zero)?

1/64K
3

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

