Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work.
Good Luck!

Your Name (please print) \qquad

Problem 1 (4 parts, 40 points)
Safety in Numbers
Part A (10 points) Convert the following notations:

binary notation	decimal notation
101111100.	
1100.1011	69.4375
	hexadecimal notation
binary notation	
10110010101.0101101	$8 B 6.3 \mathrm{C}$

Part B (12 points) For the 28 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned fixed-point (26 bits). (2 bits)		
signed integer (28 bits) . (0 bits)		
signed fixed-point (21 bits) . (7 bits)		
signed fixed-point (14 bits) . (14 bits)		

Part C (6 points) A 40 bit floating point representation has a 30 bit mantissa field, a 9 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?
What is the smallest value that can be represented (closest to zero)?
2
2
How many decimal significant figures are supported?
Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

	$\begin{array}{r} 11.011 \\ +1.001 \\ \hline \end{array}$	$\begin{array}{r} 1.111 \\ +\quad .001 \\ \hline \end{array}$	$\begin{array}{r} 1.010 \\ -11.011 \end{array}$	$\begin{array}{r} 10.000 \\ -\quad 0.001 \\ \hline \end{array}$
result				
or?	$\square \mathrm{no}$ ayes	$\square \mathrm{no}$ ayes	-no ayes	-no ayes
Ened error?	-no oyes	-no \quad yes	no	no

Problem 2 (3 parts, 18 points)
State Representatives
Part A (8 points) Implement a transparent latch using only basics gates (AND, OR, NAND, NOR, and NOT). Also complete the behavior table below.

IN	EN	OUT	$\overline{\text { OUT }}$
A	0		
A	1		

Part B (4 points) Consider a register with a selectable write enable (WE) and read enable (RE). It is implemented with transparent latches, a 2 to 1 mux, and a pass gate. Describe its behavior by completing the output values. Also indicate when a write and/or a read is being performed.

Part C (6 points) Assume the following signals are applied to a register. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Draw crosshatch where Out is unknown.

Problem 3 (3 parts, 30 points)
Accountable
Part A (10 points) Design a toggle cell using transparent latches, 2to1 muxes, and inverters (use icons, labeling inputs \& outputs). Your toggle cell should have an active high toggle enable input TE, and an active low clear input $\mathbf{C L R}$, clock inputs Φ_{1} and Φ_{2}, and an output Out. The $\overline{\mathbf{C L R}}$ signal has precedence over TE. Also complete the behavior table for the toggle cell.

Part B (10 points) Now combine these toggle cells to build a divide by 6 counter. Your counter should have an external clear, external count enable, and three count outputs $\mathrm{O}_{2}, \mathrm{O}_{1}, \mathrm{O}_{0}$. Use any basic gates (AND, OR, NAND, NOR, \& NOT) you require. Assume clock inputs to the toggle cells are already connected. Your design should support multi-digit systems.

Ext CE -

Ext CLR -

-0_{1}
$-\mathrm{O}_{2}$

Part C (10 points) Build a stopwatch that counts seconds and minutes using divide by N counters drawn below. Be sure to fill in the needed divider for seconds, tens of seconds, and minutes. Use any basic gates you require. Assume a one hertz clock is already connected.

Problem 4 (1 parts, 12 points)
Implement a 4to1 multiplexer using only pass gates and inverters. Label all inputs and outputs.

