ECE 2030 B 12:00pm	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two	27 October 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)_____

Safety in Numbers

2 _____

Problem 1 (4 parts, 40 points)

Part A (10 points) Convert the following notations:

binary notation	decimal notation
1 0111 1100.	
1100.1011	
	69.4375
binary notation	hexadecimal notation
101 1001 0101.0101 101	
	8B6.3C

Part B (12 points) For the 28 bit representations below, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two's complement.

representation	most positive value	step size
unsigned fixed-point		
(26 bits) . (2 bits)		
signed integer		
(28 bits) . (0 bits)		
signed fixed-point		
(21 bits) . (7 bits)		
signed fixed-point		
(14 bits) . (14 bits)		

Part C (6 points) A 40 bit floating point representation has a 30 bit mantissa field, a 9 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2
--	---

What is the smallest value that can be represented (closest to zero)?

How many decimal significant figures are supported?

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a **five bit unsigned fixed-point** and **five bit two's complement fixed-point** representations.

	11. <u>+ 1</u> .	.011 .001	1 +	.111 .001	1. <u>-11</u>	.010 .011	10 - 0	.000 . <u>001</u>
result								
unsigned error?	□ no	□ yes	□ no	□ yes	□ no	□ yes	□ no	□ yes
signed error?	□ no	□ yes	□ no	□ yes	□ no	□ yes	□ no	□ yes

2

ECE 2030 B 12:00pm	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two	27 October 2010

Problem 2 (3 parts, 18 points)

State Representatives Part A (8 points) Implement a transparent latch using only basics gates (AND, OR, NAND, NOR, and NOT). Also complete the behavior table below.

IN	EN	OUT	OUT
Α	0		
А	1		

Part B (4 points) Consider a register with a selectable write enable (WE) and read enable (RE). It is implemented with transparent latches, a 2to1 mux, and a pass gate. Describe its behavior by completing the output values. Also indicate when a write and/or a read is being performed.

		-	IN	WE	RE	CLK	OUT	write?	read?
IN —		— OUT	А	0	0	$\uparrow \downarrow$			
WE —	Register	- RE	А	1	0	$\uparrow \downarrow$			
($\phi_1 \qquad \phi_2$		Α	0	1	$\uparrow \downarrow$			
		-	Α	1	1	$\uparrow \downarrow$			

Part C (6 points) Assume the following signals are applied to a register. Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where* **Out** *is unknown*.

ECE 2030 B 12:00pm	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two	27 October 2010

Problem 3 (3 parts, 30 points)

Part A (10 points) Design a toggle cell using **transparent latches**, **2to1 muxes**, and **inverters** (use icons, **labeling inputs & outputs**). Your toggle cell should have an active high toggle enable input **TE**, and an active low clear input **CLR**, clock inputs Φ_1 and Φ_2 , and an output **Out**. The **CLR** signal has precedence over **TE**. Also complete the behavior table for the toggle cell.

				— Out	TE	CLR	CLK	Out
				— Oui	0	0	↑↓	
					1	0	↑↓	
1	I	I	I		0	1	↑↓	
ΤE		Φ_1	Φ_2		1	1	↑↓	

Part B (10 points) Now combine these toggle cells to build a **divide by 6** counter. Your counter should have an external clear, external count enable, and three count outputs O_2 , O_1 , O_0 . Use any basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the toggle cells are already connected. *Your design should support multi-digit systems*.

	TE
Ext CE —	Ou
	CLR

 $-O_0$

02

Ext CLR –

ECE 2030 B 12:00pm	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two	27 October 2010

Part C (10 points) Build a stopwatch that counts seconds and minutes using divide by N counters drawn below. *Be sure to fill in the needed divider for seconds, tens of seconds, and minutes.* Use any basic gates you require. Assume a one hertz clock is already connected.

I Ext CLR

