ECE 2030C 2:00 p.m.	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two Solution	27 October 2010

Problem 1 (3 parts, 21 points)

State

Part A (8 points) Implement a transparent latch using only inverters and pass gates. Label the inputs In and En, and output Out.

Part B (7 points) Consider a register with a selectable *write enable* (WE) and *read enable* (RE). It is implemented with transparent latches, a 2 to 1 mux, and a pass gate. Describe its behavior by completing the output values. Also indicate when a write and/or a read is being performed.

			IN	WE	RE	CLK	OUT	write?	read?
IN —			А	0	0	↑↓	Zo		
WE —	Register	- RE	А	1	0	↑↓	Zo	\checkmark	
.	$\phi_1 \qquad \phi_2$	-	А	0	1	↑↓	Qo		√
			А	1	1	↑↓	А	√	\checkmark

Part C (6 points) Assume the following signals are applied to a register with write enable Draw the output signal **Out**. Draw a vertical line where **In** is sampled. *Draw crosshatch where* **Out** *is unknown*.

ECE 2030C 2:00 p.m.	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two Solution	27 October 2010

Problem 2 (4 parts, 40 points)

Number Representations & Arithmetic

Part A (10 points) Convert the following notations:

decimal notation		binary notation		
327		101000111		
37.5625		100101.1001		
44.125		101100.001		
octal notation		hexadecimal notation		
73.37		111011.0110111 = 3B.7C		
1011010.1101 = 132.64	4 🣛	0x5A.D		

Part B (12 points) For these 12 bit representations, determine the most positive value and the step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. All signed representations are two's complement.

representation	most positive value	step size
unsigned integer (12 bits) . (0 bits)	4K	1
signed fixed-point (6 bits) . (6 bits)	31 63/64	1/64
unsigned fixed-point (8 bits) . (4 bits)	255 15/16	1/16
signed fixed-point (10 bits) . (2 bits)	511 3/4	1/4

Part C (6 points) A 29 bit floating point representation has a 17 bit mantissa field, a 11 bit exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)?	2 ¹⁰²³
What is the smallest value that can be represented (closest to zero)?	2 -1024
How many decimal significant figures are supported?	5

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a six bit unsigned fixed-point and six bit two's complement fixed-point representations.

	1010.00	110.11	1001.01	101.11
	+111.11	+ 10.00	<u>- 1100.10</u>	<u>- 100.01</u>
result	1.11	1000.11	1100.11	1.10
unsigned error?	□ no ■ yes	∎ no ⊔ yes	□ no ■ yes	∎ no □ yes
signed error?	∎ no ⊔ yes	□ no ■ yes	∎ no ⊔ yes	∎ no □ yes

ECE 2030C 2:00 p.m.	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two Solution	27 October 2010

Problem 3 (2 parts, 15 points)

Building Blocks

Part A (7 points) Complete the following truth table for a priority encoder. Assume the priority order (from highest to lowest) is $I_2 > I_0 > I_3 > I_1$

	Io	I_1	I2	I_3	V	O_1	O ₀
4	0	0	0	0	0	Х	Х
	1	X	0	X	1	0	0
$-I_2 \stackrel{\text{end}}{\sim} O_1$	0	1	0	0	1	0	1
-I3 de	X	X	1	X	1	1	0
	0	X	0	1	1	1	1

Part B (8 points) Implement a 2 to 1 multiplexer using only basic gates (AND, OR, NAND, NOR, NOT). Label all inputs and outputs.

ECE 2030C 2:00 p.m.	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two Solution	27 October 2010

Problem 4 (3 parts, 24 points)

Counters

Part A (7 points) Implement a toggle cell using *only transparent latches and basic gates (XOR, AND, OR, NAND, NOR, NOT)*. Use an icon for the transparent latches. Label the inputs TE, \overline{CLR} , Φ_1 , Φ_2 and the output Out.

Part B (8 points) Now combine these toggle cells to build a **divide by 24** counter. Your counter should have an external clear, external count enable, and five count outputs O_4 , O_3 , O_2 , O_1 , O_0 . Use any basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the toggle cells are already connected. *Your design should support multi-digit systems*.

ECE 2030C 2:00 p.m.	Computer Engineering	Fall 2010
4 problems, 5 pages	Exam Two Solution	27 October 2010

Part C (9 points) Build a military timer (HH:MM) which displays hours (0...23) on the left and minutes (0...59) on the right as follows. In the diagram below:

a) Fill in the label "Divide by ____" on each counter.

b) Label the number of output wires coming from each counter to its attached display.

c) Draw the appropriate wiring connections to allow this military timer to correctly respond to external clear (Ext CLR) and count enable (Ext CE) signals, and to correctly increment the hour count when the maximum number of minutes have passed while the clock is still running.

Use any basic gates you require. Assume clock inputs are already connected.

