
ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have
a question, raise your hand and I will come to you. Please work the exam in pencil and do not
separate the pages of the exam. For maximum credit, show your work.
Good Luck!

Your Name (please print) __

1 2 3 4 5 total

28 32 24 28 32 144

http://blogs.static.mentalfloss.com/blogs/archives/20735.html

1

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Problem 1 (3 parts, 28 points) Instruction Formats, Etc.

Part A (8 points) Suppose a datapath has three operand busses (two source, one destination), 244
different instruction types, and 128 registers where each register is 32 bits wide. Immediate
operands can be in the range of ±8K. Label the fields of an I-type instruction format and indicate
the maximum number of bits needed for each field.

Label: Label: Label: Label:

bits: # bits: # bits: # bits:

Part B (8 points) Derive the simplified POS expression from the following Karnaugh map.

Simplified POS expression:

Part C (12 points) For each problem below, compute the operations using the rules of arithmetic,
and indicate whether an overflow occurs assuming all numbers are expressed using a four bit
unsigned and four bit two’s complement representations.

1010
+ 11 0

101
+ 1 0 0

1011
- 1110

1010
- 10 1

result

unsigned
error?
signed
error?

2

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Problem 2 (4 parts, 32 points) Dueling Designs
Complete each design below. Be sure to label all signals.

Part A: Complete the following CMOS design. Also
express its behavior.

Out =

Part B: Implement the following expression using NOR
gates. Use proper mixed logic design. Determine # of
switches needed.

Out=AB ⋅C⋅DE

switches =

Part C: Complete the truth table for even parity. Then
implement the behavior using only one 2 to 4 decoder
and one OR gate. Label all inputs and outputs of the
decoder.

A B A⊕B

0 0

1 0

0 1

1 1

Part D: Complete the behavior table for a 2 to 4 decoder.
Then implement it using three 1 to 2 decoders.

IN1 IN0 En O0 O1 O2 O3

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

3

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Problem 3 (3 parts, 24 points) Counters

Part A (7 points) Implement a toggle cell using only transparent latches and basic gates (XOR,
AND, OR, NAND, NOR, NOT). Use an icon for the transparent latches. Label the inputs TE,

CLR , Φ1, Φ2 and the output Out.

Part B (8 points) Now combine these toggle cells to build a divide by 24 counter. Your counter
should have an external clear, external count enable, and five count outputs O4, O3, O2, O1, O0.
Use any basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the
toggle cells are already connected. Your design should support multi-digit systems.

O
0

O
1

O
2

Ext CE

Ext CLR

TE

CLR

 Out

TE

CLR

 Out

TE

CLR

 Out

O
3

TE

CLR

 Out

O
4

TE

CLR

 Out

4

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Part C (9 points) Build a military timer (HH:MM) which displays hours (0...23) on the left and
minutes (0...59) on the right as follows. In the diagram below:

a) Fill in the label “Divide by ” on each counter.

b) Label the number of output wires coming from each counter to its attached display.

c) Draw the appropriate wiring connections to allow this military timer to correctly respond to
external clear (Ext CLR) and count enable (Ext CE) signals, and to correctly increment the hour
count when the maximum number of minutes have passed while the clock is still running.

Use any basic gates you require. Assume clock inputs are already connected.

Ext CLR Ext CE

CLR CE

 Out

Max Count

 Divide by _____

CLR CE

 Out

Max Count

 Divide by _____
(a) (a)

(b) (b)

5

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Problem 4 (3 parts, 28 points) Storage

Part A (12 points) Consider a 256 Mbit DRAM chip organized as 8 million addresses of 32-bit words.
Assume both the DRAM cell and the DRAM chip are square. The column number and offset concatenate
to form the memory address. Using the organization approach discussed in class, answer the following
questions about the chip. Express all answers in decimal (not powers of two).

total number of bits in address

number of columns

column decoder required (n to m)

number of words per column

type of mux required (n to m)

number of address lines in column offset

Part B (10 points) Implement a ten transistor transparent latch (left) and a register with write
enable (right) using the 2 to 1 mux plus other devices. Label all inputs and outputs.

I0

I1

O

S

I0

I1

O

S

10T Transparent Latch register with write enable

Part C (6 points) Assume the following signals are applied to a register with write enable. Draw
the output signal Out. Draw a vertical line where In is sampled. Assume Out is initially zero.

Φ1

Φ2

WE

In

Out

6

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Problem 5 (5 parts, 32 points) Assembly Language Programming

Part A (14 points) Write a MIPS subroutine SumMags that reads in a vector of integers and sums up the
magnitude (absolute value) of each element, placing the sum of magnitudes in register $3. Assume the
length of the vector (# of integer elements) is given in register $2 and is > 0, and the base address of the
vector is in register $1. Your code calls the subroutine Abs, which computes the absolute value of an
integer x given in register $4; it returns ∣x∣ in register $4. Follow the steps outlined in the
comments in the rightmost column below. You may modify only registers $1 through $4.

label instruction comment

SumMags: # initialize running sum ($3 = 0)

Loop: # load current vector element x into $4

B: [leave blank for
 part A]

code to be written in part B to
preserve registers on stack

jal Abs # call Abs ($4 = |x|)

C: [leave blank for
 part A]

code to be written in part C to
restore registers on stack

add |x| to running sum

increment vector pointer to next element

decrement number of elements by 1

if number of elements ≠ 0, loop back

return to caller

Part B (5 points) To ensure that SumMags can be properly called by another subroutine and that
SumMags can call Abs without losing any of the intermediate values it computes, you must add
code before and after the “jal Abs” instruction. Write MIPS code to preserve registers before
the jal by pushing them on the stack. Assume Abs can modify any registers, not just $4.

label instruction comment

B:

jal Abs # call Abs ($4 = |x|)

7

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

Part C (5 points) Write MIPS code to restore registers after the jal by popping them from the
stack. Assume Abs can modify any registers, not just $4.

label instruction comment

jal Abs # call Abs ($4 = |x|)

C:

Part D (4 points) Write the MIPS instruction that is equivalent to the following microinstruction.
X Y Z rwe im

en
im va au

en
s/
a

lu
en

lf su
en

st ld
en

st
en

r/
 w

msel description

6 2 8 7 1 0 x 0 x 1 8 0 x 0 0 x 0

Equivalent MIPS Instruction:

Part E (4 points) Write the MIPS instruction that is equivalent to the following microinstruction.
X Y Z rwe im

en
im va au

en
s/
a

lu
en

lf su
en

st ld
en

st
en

r/
 w

msel description

7 3 x 6 1 1 FFFA 0 x 0 x 1 0 0 0 x 0

Equivalent MIPS Instruction:

8

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 9 pages Final Exam 17 December 2010

memory

register
file

32 x 32

555

rwe

X Y Z

au en

-a/s

arithmetic
unit

sign extender

im vaim en

lu en

logical
unit

lf
4

addr

data

r/-w msel

st en

ld en

shift types
0 = logical
1 = arithmetic
2 = rotate
+ count shifts right
- count shifts left

logical functions
X Y out
0 0 lf0

1 0 lf1

0 1 lf2

1 1 lf3

cycle cycle number
X register driven onto X bus
Y register driven onto Y bus
Z register written from Z bus
rwe register write enable
im en immediate enable on Y bus
im va immediate value

au en arithmetic unit enable
-a/s -add / sub (0 = add, 1 = subtract)
lu en logical unit enable
lf logical function
su en shift unit enable
st shift type
ld en load enable
st en store enable
r/-w read/-write (0 = write, 1 = read)
msel memory select
description operation description

su en

shift
unit

st
2

count

16

32

MIPS Instruction Set
instruction example meaning

add add $1,$2,$3 $1 = $2 + $3
subtract sub $1,$2,$3 $1 = $2 - $3
add immediate addi $1,$2,100 $1 = $2 + 100
multiply mul $1,$2,$3 $1 = $2 * $3
divide div $1,$2,$3 $1 = $2 / $3
and and $1,$2,$3 $1 = $2 & $3
or or $1,$2,$3 $1 = $2 | $3
xor xor $1,$2,$3 $1 = $2 xor $3
and immediate andi $1,$2,100 $1 = $2 & 100
or immediate ori $1,$2,100 $1 = $2 | 100
xor immediate xori $1,$2,100 $1 = $2 xor 100
shift left logical sll $1,$2,5 $1 = $2 << 5 (logical)
shift right logical srl $1,$2,5 $1 = $2 >> 5 (logical)
shift left arithmetic sla $1,$2,5 $1 = $2 << 5 (arithmetic)
shift right arithmetic sra $1,$2,5 $1 = $2 >> 5 (arithmetic)
load word lw $1, ($2) $1 = memory [$2]
store word sw $1, ($2) memory [$2] = $1
load upper immediate lui $1,100 $1 = 100 x 216

branch if equal beq $1,$2,100 if ($1 = $2), PC = PC + 4 + (100*4)
branch if not equal bne $1,$2,100 if ($1 ≠ $2), PC = PC + 4 + (100*4)
set if less than slt $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if less than immediate slti $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
jump j 10000 PC = 10000
jump register jr $31 PC = $31
jump and link jal 10000 $31 = PC + 4; PC = 10000

9

