Part A (6 points) For the pass gate symbol shown on the left below, draw its implementation on the right. Be sure that the named terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D) on the right correspond to the icon terminals on the left.

Part B (8 points) Implement a 2 to 1 multiplexer using only pass gates and inverters. Label all inputs $\left(\mathrm{In}_{0}, \mathrm{In}_{1}, \mathrm{~S}\right)$ and output (Out).

Part C (8 points) Using the 2 to 1 mux implemented in part B (in icon form), implement a 4 to 1 mux. Label all inputs $\left(\operatorname{In}_{0}, \operatorname{In}_{1}, \operatorname{In}_{2}, \operatorname{In}_{3}, S_{0}, S_{1}\right)$ and output (Out)

Problem 2 (3 parts, 28 points)
Part A (10 points) Convert the following notations:

decimal notation	binary notation
25.125	11001.001
123.5	1111011.1
250.1875	11111010.0011
hexadecimal notation	octal notation
FDA. 5	$111111011010.0101=7732.24$
1BE.1	$110111110.0001=676.04$

Part B (12 points) For the 28 bit representations below, determine the most negative value, most positive value, and step size (difference between sequential values). All answers should be expressed in decimal notation. Fractions (e.g., 3/16ths) may be used. All signed representations are two's complement.

representation	most negative value	most positive value	step size
unsigned integer $(28$ bits $) .(0$ bits $)$	0	256 M	1
signed fixed-point $(20$ bits $) .(8$ bits $)$	-512 K	+512 K	$1 / 256$
signed fixed-point $(16$ bits $) .(12$ bits $)$	-32 K	+32 K	$1 / 4 \mathrm{~K}$
signed fixed-point $(14$ bits $) .(14$ bits $)$	-8 K	+8 K	$1 / 16 \mathrm{~K}$

Part C (6 points) A 28 bit single precision floating point representation has a 21 bit mantissa field, a six bit exponent field, and one sign bit. Express answers in decimal, not powers of two.

> What is the largest value that can be represented (closest to infinity)? 2B

What is the smallest value that can be represented (closest to zero)?
1/4G
How many decimal significant figures are supported?

Part A (16 points) For each problem below, compute the operations using the rules of arithmetic, and indicate whether an overflow occurs assuming all numbers are expressed using a five bit unsigned fixed-point and five bit two's complement fixed-point representations.

	1.011	11.111		0.000	10.001
result	$\frac{+1.011}{10.110}$		0.001		-0.001
n			-10.010		
unsigned error?	no	yes	yes	yes	
signed error?	yes	no	no	no	

Problem 4 (4 parts, 34 points)
State of the Union
Part A (7 points) Implement an RS latch with active high inputs, R and S. Use only basic gates (AND, OR, NAND, NOR, and NOT). Label the inputs and output. Also complete the behavior table. Note -Out means $\overline{O u t}$.

R	S	Out	- Out
0	0	Q_{0}	$-\mathrm{Q}_{0}$
1	0	0	1
0	1	1	0
1	1	0	0

Part B (7 points) Expand the RS latch to a transparent latch and complete the truth table. Use only basic gates (AND, OR, NAND, NOR, and NOT). Label the inputs and output. Also complete the behavior table.

Part C (12 points) Build a register using two transparent latches plus a 2 tol mux (draw the labeled icon), a pass gate, and an inverter. Again, complete the behavior table. Recall that the CLK signal indicates a full $\Phi_{1} \Phi_{2}$ cycle; so the output should be the value at the end of a cycle (with the given inputs).

Part D (8 points) Assume the following signals are applied to your register. Draw the output signal Out. Draw a vertical line where $\mathbf{I n}$ is sampled. Draw crosshatch where Out is unknown.

